Designed for engineers and analysts. You will learn how to use the Simcenter 3D environment for Computer-Aided Engineering (CAE) pre- and post-processing, as well as use the integrated solvers to predict real-world product performance for many physics domains.

- 12 month subscription
- Access to cloud-based environment for hands-on lab exercises
- Access to new training content added during the subscription period
- Knowledge assessments to measure learning progress

Chapters

- Learning Experience Overview
- Analyzing Models in Simcenter 3D Pre/Post - 2021.2
- Managing Analysis Data in Simcenter 3D Files - 2021.2
- Using Pre/Post Features to Work with Models - 2021.2
- Assessment: Fundamentals of Using Pre/Post - 2021.2

Learn how to analyze a model and work with analysis data in Simcenter 3D.

Learn how to analyze a model and work with analysis data in Simcenter 3D.

- Welcome: Navigation Overview
- Fundamentals of using Pre/Post Intro

- What Can You Do with Pre/Post?
- Finite Element Analysis in Simcenter 3D
- Finite Element Analysis in Simcenter 3D
- Assessment: Analyzing Models in Simcenter 3D and Pre/Post

- Simcenter 3D Files Overview
- Working with Simcenter 3D Files in Pre/Post
- Preparing the Model
- Modifying Model Geometry
- Solving the Model and Post-processing
- Lab: Using Simcenter 3D Files in an Analysis
- Assessment: Managing Analysis Data in Simcenter 3D Files

- Using Pre/Post Features
- Using the Simulation Navigator to Work with Your Model
- Lab: Working with a Model Using the Pre/Post User Interface
- Displaying a Model
- Lab: Displaying a Model
- Selecting Objects
- Using Selection Recipes
- Lab: Selecting Objects
- Using Groups
- Lab: Using Groups
- Working with Coordinate Systems
- Lab: Working with Coordinate Systems
- Assessment: Using Pre/Post Features to Work with Models
- Thank you for watching Fundamentals of using Pre/Post

- Assessment: Fundamentals of Using Pre/Post

Chapters

- Preparing Geometry for Meshing - 2021.2
- Meshing a Model - 2021.2
- Modeling Connections - 2021.2
- Modeling Assemblies - 2021.2
- Applying Boundary Conditions - 2021.2
- Defining Variable Conditions and Properties - 2021.2
- Modeling Symmetry - 2021.2
- Checking the Model and Resolving Problems - 2021.2
- Assessment: Preparing the model for analysis - 2021.2

Learn how to prepare a model for analysis by working with geometry, meshes, connections, assemblies, loads, and boundary conditions.

Learn how to prepare a model for analysis by working with geometry, meshes, connections, assemblies, loads, and boundary conditions.

- Loading a Model into Simcenter 3D
- Preparing Geometry for Meshing
- Using Synchronous Modeling to Model Parts
- Lab: Using Synchronous Modeling to Modify Parts
- Simplifying Geometry with Idealization
- Lab: Creating Midsurfaces before Meshing
- Simplifying Geometry with Abstraction
- Lab: Simplifying Geometry with Abstraction
- Working with Associative Copies of Geometry
- Lab: Working with Associative Copies of Geometry
- Lab: Simplifying Geometry for Meshing
- Lab Solution: Simplifying Geometry for Meshing
- Assessment: Preparing Geometry

- Selecting a Mesh and Element Type
- Creating a Mesh
- Lab: Creating a 3D Tetrahedral Mesh
- Using Mesh Collectors to Organize the Model
- Lab: Using Mesh Collectors to Organize the Model
- Defining Material Properties for a Mesh
- Lab: Defining Material Properties for a Mesh
- Lab: Defining Physical Properties for a Mesh
- Creating a 3D Hexahedral Mesh
- Splitting Complex Bodies for Hexahedral Meshing
- Lab: Creating a 3D Hexahedral Mesh
- Creating a 2D Mesh
- Lab: Creating a 2D Mesh
- Creating a 2D Mapped Mesh
- Lab: Creating a 2D Mapped Mesh
- Creating a 1D Mesh
- Lab: Creating a 1D Mesh
- Controlling the Mesh Display
- Creating Mesh Mating Conditions to Connnect Meshes
- Lab: Creating Mesh Mating Conditions
- Editing Meshes with Manual Mesh Techniques
- Lab: Editing Meshes with Manual Mesh Techniques
- Controlling Mesh Density
- Lab: Controlling Mesh Density
- Setting Element Size and Surface Curvature
- Lab: Modifying Element Size
- Lab: Creating a Structured Mesh
- Lab Solution: Creating a Structured Mesh
- Assessment: Meshing

- Modeling Connections
- Modeling Pinned Connections
- Lab: Modeling Pinned Connections
- Modeling Connections with Spider Elements
- Lab: Modeling Connections with Spider Elements
- Modeling Glue Connections
- Lab: Modeling Edge-Surface Glue Connections
- Lab: Modeling Surface-Surface Glue Connections
- Modeling Bolted Connections
- Modeling Bolted Connections Using Nuts
- Lab: Modeling a Bolted Connection with a Nut
- Modeling a Tapped Bolted Connection
- Lab: Modeling a Tapped Bolted Connection
- Lab: Applying Bolt Pre-loads
- Creating Universal Connections
- Lab: Creating Universal Connections
- Lab: Connecting Bodies
- Lab Answer: Connecting Bodies
- Assessment: Modeling Connections

- Modeling Assemblies
- Modeling an Assembly FEM from a CAD Assembly
- Modeling an Assembly FEM without a CAD Assembly
- Lab: Modeling an Associative Assembly FEM
- Lab: Modeling a Non-associative Assembly FEM
- Assessment: Modeling Assemblies

- Applying Boundary Conditions
- Nastran Structural Loads
- Nastran Structural Constraints
- Applying Loads
- Applying Constraints
- Lab: Applying Loads and Constraints
- Applying Contact
- Lab: Applying Contact
- Lab: Applying Boundary Conditions
- Lab Answer: Applying Boundary Conditions
- Assessment: Applying Boundary Conditions

- Using Fields
- Types of Fields
- Using Fields to Define Boundary Conditions
- Lab: Using Fields to Define a Boundary Condition
- Using a Spatial Map Field to Define a Boundary Condition
- Lab: Using a Spatial Map Field to Define a Boundary Condition
- Using a Field to Define Material Properties
- Lab: Using a Field to Define Nonlinear Material Properties
- Displaying Fields
- Lab: Displaying Fields
- Using Expressions
- Lab: Using Expressions to Define Boundary Conditions
- Lab: Defining a Variable Boundary Condition
- Lab Solution: Defining a Variable Boundary Condition
- Assessment: Defining Variable Conditions and Properties

- Symmetry Modeling Overview
- Lab: Modeling a Cyclic Symmetric Structure
- Lab: Modeling an Axisymmetric Structure
- Lab: Using Plane Stress Elements in a Axisymmetric Analysis
- Knowledge Check: Modeling Symmetry

- Checking Mesh Quality
- Techniques for Resolving Mesh Quality Issues
- Lab: Resolving Mesh Quality Problems
- Checking the Model Before Solving
- Techniques for Resolving Model Quality Issues
- Lab: Resolving Model Quality Issues
- Assessment: Checking the Model and Resolving Problems

- Assessment: Preparing the model for analysis

Chapters

- Setting Up and Running a Structural Analysis - 2021.2
- Introduction to Structural Analysis Workflows - 2021.2
- Introduction to Nonlinear Analysis Workflows - 2021.2
- Assessment: Solving the Model - 2021.2

Learn how to solve a model with the Simcenter Nastran solver using structural analysis types.

Learn how to solve a model with the Simcenter Nastran solver using structural analysis types.

- Using Solutions and Subcases
- Creating Solutions and Subcases
- Lab: Creating Solutions and Subcases
- Defining Solution Attributes
- Setting Solver Parameters
- Solving the Model
- Dealing with Common Solver Errors
- Validating Results
- Assessment: Setting Up and Running a Structural Analysis

- Structural Analysis Overview
- Linear Statics Analysis Workflow
- Lab: Linear Statics Analysis Workflow
- Normal Modes Analysis Workflow
- Lab: Normal Modes Analysis Workflow
- Using Subcase Versus Global Constraints
- Linear Buckling Analysis Overview
- Linear Buckling Analysis Workflow
- Lab: Linear Buckling Analysis Workflow
- Assessment: Introduction to Structural Analysis Workflows

- Nonlinear Analysis Overview
- Setting Up a Nonlinear Solution
- Lab: Geometric Nonlinear Analysis
- Using Time Steps in a Nonlinear Solution
- Lab: Using Timesteps in a Nonlinear Solution
- Evaluating Nonlinear Models
- Lab: Evaluating Nonlinear Models
- Assessment: Introduction to Nonlinear Analysis Workflows

- Assessment: Solving the Model

Chapters

- Displaying Results in Post Views - 2021.1
- Manipulating Results Data - 2021.1
- Graphing Results - 2021.1
- Saving and Restoring Views - 2021.1
- Generating Reports - 2021.1

Learn how to display analysis results using post views, graphs, and reports.

Learn how to display analysis results using post views, graphs, and reports.

- Displaying Results Overview
- Displaying Results in Post Processing
- Displaying Results in a Post View
- Lab: Displaying Results in a Post View
- Controlling Visibility in Post Views
- Lab: Controlling Visibility in Post Views
- Displaying Results in Multiple Viewports
- Lab: Displaying Results in Multiple Viewports
- Animating Results
- Lab: Animating Results
- Annotating Results
- Lab: Annotating Results
- Displaying More Results in Post Processing
- Displaying Stress/Strain Results on 2D Elements
- Lab: Displaying Stress/Strain Results on 2D Elements
- Calculating and Displaying Beam Stresses
- Lab: Displaying Beam Stresses
- Displaying Symmetry Results in a Post View
- Lab: Displaying Axisymmetric Results in a Post View
- Displaying Results in the Results Viewer
- Lab: Displaying Results in Post Views
- Lab Solution: Displaying Results in Post Views
- Assessment: Displaying Results in Post Views

- Manipulating Results Data Overview
- Identifying and Outputting Results
- Lab: Identifying and Outputting Results
- Creating Custom Results
- Lab: Creating Custom Results
- Combining and Enveloping Results
- Lab: Enveloping and Combining Results
- Creating Nodal Force Reports
- Lab: Creating Nodal Force Reports
- Assessment: Manipulating Results Data

- Graphing Overview
- Graphing Results Across FE Entities
- Lab: Graphing Results Across FE Entities
- Graphing Results Using a Query Curve
- Lab: Graphing Results Using a Query Curve
- Graphing Results Across Iterations
- Lab: Graphing Results Across Multiple Iterations
- Plotting Two Functions
- Lab: Plotting Two Functions
- Modifying Graph Display Properties
- Lab: Modifying Graph Display Properties
- Lab: Graphing Results
- Lab Answer: Graphing Results
- Assessment: Graphing Results

- Saving and Restoring Views
- Saving and Restoring Layout States to Set Up Views
- Lab: Saving and Restoring Layout States to Set Up Views
- Saving and Restoring Post View Settings
- Lab: Saving and Restoring Post View Settings
- Assessment: Saving and Restoring Views

- Introduction to Creating Reports
- Generating a Report
- Customizing a Report Template
- Assessment: Generating Reports

Chapters

- Analysis with Simcenter Nastran FEM Acoustics - 2020.1
- Meshing a Simcenter Nastran FEM Acoustics Model - 2020.1
- Setting Up and Solving a Simcenter Nastran FEM Acoustics Solution - 2020.1
- Analysis with Simcenter 3D Acoustics BEM - 2020.1
- Meshing a Simcenter 3D Acoustics BEM Model - 2020.1
- Setting Up and Solving a Simcenter 3D Acoustics BEM Solution - 2020.1
- Model and Load Pre-Processing - 2020.1
- Using Alternate Component Representations in Acoustics Models - 2020.1
- Assessment: Working with Acoustics Models - 2020.1

This learning path teaches users how to prepare an acoustics model and review analysis results.

This learning path teaches users how to prepare an acoustics model and review analysis results.

- Introduction to Simcenter Nastran FEM Acoustics
- Analyzing an Acoustics Model in Nastran FEM Acoustics
- Lab: Analyzing an Acoustics Model in Nastran FEM Acoustics
- Knowledge Check: Introduction to Simcenter Nastran FEM Acoustics

- Meshes for Acoustic Models
- Acoustic Mesh Types
- Meshing Structural Models
- Lab: Meshing Structural Models
- Meshing for Interior Acoustic Analysis (FEM)
- Lab: Generating Meshes for Interior Acoustic Analysis (FEM)
- Meshing for External Acoustic Analysis
- Lab: Generating Meshes for Exterior Acoustic Analysis (FEM)
- Creating a Microphone Mesh
- Lab: Creating a Microphone Mesh
- Acoustic Materials
- Lab: Meshing a Nastran FEM Acoustics Model
- Lab Solution: Meshing a Nastran FEM Acoustics Model
- Lab: Meshing a Nastran FEM Vibro-acoustics Model
- Lab Solution Part 1: Meshing a Nastran FEM Vibro-acoustics Model
- Lab Solution: Part 2: Meshing a Nastran FEM Vibro-acoustics Model
- Knowledge Check: Meshing a Simcenter Nastran FEM Acoustics Model

- Setting Up and Solving an Acoustics Model
- Nastran FEM Acoustics Solution Types
- Nastran FEM Acoustics Solution Parameters
- Lab: Setting Up and Solving an Acoustics Model
- Nastran FEM Acoustics Boundary Conditions
- Creating Nastran FEM Acoustics Boundary Conditions
- Lab: Creating Nastran FEM Acoustics Boundary Conditions
- Creating Loads for Nastran FEM Acoustics Analysis
- Lab: Creating Loads for Nastran FEM Acoustics Analysis
- Creating Constraints for Nastran FEM Acoustics Analysis
- Lab: Creating Constraints for Nastran FEM Acoustics Analysis
- Nastran FEM Acoustics Simulation Objects
- Creating Simulation Objects for Nastran FEM Acoustics Analysis
- Lab: Creating Simulation Objects for Nastran FEM Acoustics Analysis
- Solving the Nastran FEM Acoustics Model and Reviewing Results
- Post Processing Scenarios
- Lab: Setting Up and Solving a Nastran FEM Vibro-Acoustics Analysis
- Lab Solution: Part 1: Setting Up and Solving a Nastran FEM Vibro-Acoustics Analysis
- Lab Solution: Part 2: Setting Up and Solving a Nastran FEM Vibro-Acoustics Analysis
- Knowledge Check: Setting Up and Solving a Simcenter Nastran FEM Acoustics Solution

- Introduction to Simcenter 3D Acoustics BEM
- Analyzing an Acoustics Model in Acoustics BEM
- Lab: Analyzing an Acoustics Model in Acoustics BEM
- Knowledge Check: Analysis with Simcenter 3D Acoustics BEM

- Meshes for Acoustics Models
- Meshing for Direct BEM Acoustics Analysis
- Lab: Generating Meshes for Direct BEM Analysis
- Meshing for Indirect BEM Acoustic Analysis
- Lab: Generating Meshes for Indirect BEM Acoustic Analysis
- Acoustic Materials
- Lab: Meshing an Acoustics BEM Model
- Lab Solution: Meshing an Acoustics BEM Model
- Knowledge Check: Meshing a Simcenter 3D Acoustics BEM Model

- Acoustics BEM Solution Types
- Acoustics BEM Solution Parameters
- Acoustics BEM Loads
- Creating Loads for Acoustics BEM Analysis
- Lab: Creating Loads for Acoustics BEM Analysis
- Acoustics BEM Simulation Objects
- Creating Simulation Objects for Acoustics BEM Analysis
- Lab: Creating Simulation Objects for Acoustics BEM Analysis
- Post Processing Scenarios
- Lab: Setting Up and Solving an Acoustics BEM Solution
- Lab Solution: Setting Up an Acoustics BEM Solution
- Lab Solution: Solving an Acoustics BEM Solution
- Knowledge Check: Setting Up and Solving a Simcenter 3D Acoustics BEM Solution

- Model and Load Pre-Processing
- Transforming External Result Data for Acoustics Loads
- Lab: Using CFD Data to Create Fan Noise Loads
- Knowledge Check: Model and Load Pre-Processing

- Using Alternate Component Representations in Acoustics Models
- Creating a Mode Set
- Lab: Creating a Mode Set
- Using a Mode Set in an Acoustics Analysis
- Lab: Using a Mode Set in an Acoustics Analysis
- Creating an FRF Set
- Lab: Creating an FRF Set
- Using ATVs as Alternate Component Representations
- Creating an ATV Set
- Lab: Creating an ATV Set
- Using an ATV Set to Evaluate ATV Response
- Lab: Evaluating ATV Response Using SOL 108
- Evaluating ATV Response Using Noise and Vibration
- Lab: Evaluating ATV Response Using Noise and Vibration
- Using an ATV Set to Evaluate MATV Response
- Lab: Evaluating MATV Response
- Creating an ATV Set for BEM Acoustics
- Lab: Creating an ATV Set for BEM Acoustics
- Evaluate ATV Response in BEM Acoustics
- Lab: Evaluating ATV Response in BEM Acoustics
- Knowledge Check: Using Alternate Component Representations in Acoustics Models

- Assessment: Working with Acoustics Models

Chapters

- Gearbox Noise Radiation - 2020.1
- Transmission Loss Using Duct Modes - 2020.1
- Panel Transmission Loss - 2020.1
- Compressor Noise Radiation - 2020.1
- Electric Motor Noise - 2020.1
- Pass-By Noise - 2020.1
- Wind Noise - 2020.1
- Aircraft Cabin Noise Using TBL Loads - 2020.1
- Fan Noise - 2020.1
- Satellite Vibration - 2020.1
- Assessment: Acoustics Analysis Applications - 2020.1

This learning path teaches users how to apply acoustics analysis to solve problems in industry.

This learning path teaches users how to apply acoustics analysis to solve problems in industry.

- Analyzing Gearbox Noise Radiation
- Lab: Analyzing Motion to Acoustics Gearbox Noise
- Lab Solution: Setting up the Gearbox Model
- Lab Solution: Setting Up the Acoustic Model
- Lab Solution: Analyzing and Mapping Data
- Lab Solution: Setting Up and Solving the Vibro-acoustics Model
- Knowledge Check: Gearbox Noise Radiation

- Analyzing Transmission Loss Using Duct Modes
- Lab: Analyzing Transmission Loss of a Muffler Using Duct Modes
- Lab Solution: Setting Up the Finite Element Model
- Lab Solution: Setting Up and Solving the Solution
- Lab Solution: Reviewing Results
- Knowledge Check: Transmission Loss Using Duct Modes

- Analyzing Panel Transmission Loss
- Lab: Analyzing Aircraft Panel Transmission Loss
- Lab Solution: Setting up the Acoustic Model
- Lab Solution: Setting Up the Solution
- Lab Solution: Reviewing Results
- Lab Solution: Applying Static Pressure and Temperature
- Lab Solution: Reviewing Static Pressure and Temperature Results
- Lab Solution: Analyzing Narrow Band Results
- Knowledge Check: Panel Transmission Loss

- Using Binary Loads and Binary Nodes in Acoustics Analysis
- Lab: Analyzing Compressor Noise Radiation Using Binary Displacement Loads
- Lab Solution: Importing the Model
- Lab Solution: Meshing the Model
- Lab Solution: Solving and Reviewing Results
- Lab: Analyzing Compressor Noise Radiation Using Binary Modes
- Lab Solution: Setting Up the Finite Element Model
- Lab Solution: Solving and Reviewing Results
- Knowledge Check: Compressor Noise Radiation

- Analyzing Electric Motor Noise
- Lab: Analyzing Electric Motor Noise
- Lab Solution: Defining the Structural Model
- Lab Solution: Importing and Mapping Force Loads
- Lab Solution: Solving and Reviewing Results
- Knowledge Check: Electric Motor Noise

- Analyzing Pass By Noise
- Lab: Analyzing Car Engine Bay Noise
- Lab Solution: Setting Up the Acoustic Model
- Lab Solution: Setting Up the Acoustic Objects
- Lab Solution: Reviewing Acoustic Results
- Knowledge Check: Pass By Noise

- Analyzing Wind Noise
- Lab: Analyzing Wind Noise
- Lab Solution: Reviewing the Finite Element Model
- Lab Solution: Mapping CFD Loads
- Lab Solution: Setting up and Solving the Vibro-acoustic Solution
- Lab Solution: Reviewing Results
- Knowledge Check: Wind Noise

- Analyzing Turbulent Boundary Layer Models
- Lab: Analyzing Aircraft Panel Noise
- Lab Solution: Setting up the Finite Element Model
- Lab Solution: Setting up and Solving for VATVs
- Lab Solution: Generating TBL Loading
- Lab Solution: Setting up, Solving, and Reviewing Results
- Knowledge Check: Aircraft Cabin Noise Using TBL Loads

- Analyzing Fan Noise
- Lab: Analyzing Electronics Fan Noise
- Lab Solution: Reviewing the Finite Element Model
- Lab Solution: Mapping CFD Loads
- Lab Solution: Setting Up and Solving the Vibro-acoustic Solution
- Lab Solution: Reviewing Results
- Knowledge Check: Fan Noise

- Analyzing Satellite Vibration
- Lab: Analyzing Response to Random Excitation of a Satellite
- Lab Solution: Setting Up the Satellite Model
- Lab Solution: Solving and Reviewing Results
- Lab Solution: Creating the Random Vibro-Acoustic Solution
- Lab Solution: Defining the AML and Plane Waves
- Lab Solution: Setting Up the PSD Solution
- Lab Solution: Reviewing Results
- Knowledge Check: Satellite Vibration

- Assessment: Acoustics Analysis Applications

Chapters

- Control Elements - 2020.2
- Mechatronics Co-simulation - 2020.2
- Assessment: Controls and Mechatronics Co-simulation - 2020.2

Learn how to control the motion mechanism using data from an external control system.

Learn how to control the motion mechanism using data from an external control system.

- Control Elements
- Creating Control Elements
- Lab: Using Control Elements
- Knowledge Check: Control Elements

- Co-simulation with Third-Party Software
- Co-simulation using Amesim
- Running a Co-simulation using Amesim
- Lab: Running a Co-simulation using Simcenter Amesim
- Running a Co-simulation using Matlab/Simulink
- Running a Co-simulation using FMI
- Lab: Running a Co-simulation using FMI
- Knowledge Check: Mechatronics Co-simulation

- Assessment: Controls and Mechatronics Co-simulation

Chapters

- FE model correlation - 2020.2
- Pre-test solution process - 2020.2
- Create a test analysis reference solution - 2020.2
- Prepare for correlation analysis - 2020.2
- Modal correlation - 2020.2
- FRF correlation - 2020.2
- Assessment: FE model correlation - 2020.2

Prepare the physical tests using the pre-test planning tools and how to correlate modal finite element results with experimental data in Simcenter 3D.

Prepare the physical tests using the pre-test planning tools and how to correlate modal finite element results with experimental data in Simcenter 3D.

- Introduction to FE model correlation and updating
- Getting started in Simcenter 3D FE Model Correlation
- Knowledge Check: FE model correlation

- Pre-test solution process
- Pre-test DOFs
- Lab: Creating pre-test solution and defining DOFs
- Sensor selection
- Create pre-test solution and solve sensor configuration
- Lab: Defining sensor configurations
- Exciter selection
- Lab: Defining an exciter configuration using the DPR method
- Lab Answer: Using a Pre-test solution to define exciter locations
- Knowledge Check: Pre-test solution process

- Test analysis reference solution
- Sharing sensor and exciter locations with test engineers
- Lab: Creating a test analysis reference solution
- Knowledge Check: Create a test analysis reference solution

- Correlation solution process
- Creating test and analysis reference solutions
- Lab: Managing test and analysis reference data
- Geometrical correlation of work and reference model
- Lab: Prepare a model for correlation solution process
- Lab Answer: Prepare a model for correlation solution process
- Knowledge Check: Prepare for correlation analysis

- Modal correlation
- Manage mode sensors and work with mode pairs
- Lab: Managing mode sensors
- Quantitative modal correlation
- Generate and display matrix results
- Lab: Visualizing modal correlation results
- Correlate modes of symmetric structure
- Lab: Modal correlation of a symmetric structure
- Lab: Comparing correlation mode shapes
- Lab: Modal correlation of an aircraft engine nacelle
- Lab Answer: Modal correlation of an aircraft engine nacelle
- Knowledge Check: Modal correlation

- Analysis solution process
- Create analysis solution and output request
- Lab: Create an analysis solution with FRF output
- FRF correlation
- Create FRF correlation and display overlay FRFs
- Lab: Creating FRF correlation
- Lab Answer: Creating an FRF correlation
- Knowledge Check: FRF correlation

- Assessment: FE model correlation

Chapters

- Introduction to Simcenter 3D Motion - 2020.2
- Analyzing Mechanisms in Motion - 2020.2
- Preparing Models in Motion - 2020.2
- Creating Bodies, Joints, and Drivers - 2020.2
- Defining Springs, Dampers, and Bushings - 2020.2
- Working with Data - 2020.2
- Adding Loads - 2020.2
- Defining Contact - 2020.2
- Solving a Motion Analysis - 2020.2
- Working with Motion Results - 2020.2
- Working with Submechanisms - 2020.2
- Assessment: Motion Fundamentals - 2020.2

Learn to use the basic capabilities of Simcenter 3D Motion to analyze mechanisms.

Learn to use the basic capabilities of Simcenter 3D Motion to analyze mechanisms.

- Introduction to Simcenter 3D Motion
- What is a Mechanism?
- Motion Workflow
- Working in Motion
- Using Motion Files
- Lab: Animating a Mechanism
- Knowledge Check: Working in Motion

- Motion Solvers and General Solution Options
- Motion Analysis-Specific Solution Options
- Running a Kinematic Analysis
- Running a Dynamic Analysis
- Running a Static Analysis
- Lab: Running a Kinematic Analysis with Motion
- Lab: Articulating a Simple Mechanism
- Lab: Running a Dynamic Analysis with Motion
- Lab: Running a Static Analysis with Motion
- Knowledge Check: Analyzing Mechanisms in Motion

- Preparing Models in Motion
- Using Assemblies in Motion
- Lab: Using Assemblies in Motion
- Importing CAD Data into Motion
- Lab: Importing CAD Data into Motion
- Creating a Mechanism in Motion with Primitive Geometry
- Lab: Creating a Mechanism with Primitive Geometry
- Knowledge Check: Preparing Models for Motion

- Motion Bodies
- Lab: Creating Motion Bodies
- Joints
- Creating Joints
- Lab: Creating Cylindrical and Universal Joints
- Understanding the Gruebler Count
- Lab: Checking the Gruebler Count
- Assembling CAD Data
- Joint Friction
- Adding Friction on a Joint
- Lab: Defining Friction on a Joint
- Specialized Constraints and Couplers
- Creating Specialized Constraints and Couplers
- Lab: Creating a Gear Coupler
- Lab: Defining a Point on Curve Constraint
- Lab Solution: Defining a Point on Curve Constraint
- Motion Drivers
- Creating Motion Drivers
- Lab: Creating a Harmonic Motion Driver
- Knowledge Check: Creating Bodies, Joints, and Drivers

- Springs and Dampers
- Creating Springs and Dampers
- Lab: Creating a Spring
- Lab: Creating a Torsion Spring and Damper
- Bushings
- Creating Bushings
- Lab: Creating Bushings
- Knowledge Check: Defining Springs, Dampers, and Bushings

- Profiles
- Using Profiles
- Lab: Using Profiles
- Expressions
- Using Expressions
- Lab: Using Expressions
- Parameter Tables
- Using Parameter Tables
- Lab: Using Parameter Tables
- Math Functions and AFUs
- Using Math Functions and AFUs
- Lab: Using Math Functions and AFUs
- Markers, Smart Points, and Sensors
- Creating Markers, Smart Points, and Sensors
- Lab: Creating Markers and Sensors
- Knowledge Check: Working with Data

- Adding Loads to the Motion Model
- Creating Forces and Torques
- Lab: Creating Scalar and Vector Forces
- Lab: Creating a Scalar Torque
- Lab: Creating Forces and Torques on a Scissors Jack
- Lab Solution: Creating Forces and Torques on a Scissors Jack
- Knowledge Check: Adding Loads

- 3D Contact
- Defining 3D Contact
- Lab: Creating 3D Contact
- Lab: Adding Friction to 3D Contact
- Lab: Creating a Valve Spring and 3D Contact
- Lab Solution: Creating a Valve Spring and 3D Contact
- Analytical Contact
- Analytical Contact Parameters
- Defining Analytical Contact
- Lab: Creating Analytical Contact
- Lab: Creating Analytical Contact Geometry
- Lab: Creating Analytical Contact on a Newton's Cradle
- Lab Solution: Creating Analytical Contact on a Newton's Cradle
- Knowledge Check: Defining Contact

- Setting Up a Motion Analysis
- Setting Up and Solving a Static Analysis
- Setting Up and Solving a Dynamics Analysis
- Improving Solver Performance and Debugging Solver Errors
- Lab: Debugging Solver Errors
- Exporting a Solution and Solving Outside Simcenter 3D
- Knowledge Check: Solving a Motion Analysis

- Motion Results
- Animating Motion Results
- Graphing Motion Results
- Lab: Animating and Graphing Forces
- Lab: Running a Clearance Analysis
- Lab: Identifying Interference
- Lab: Tracing Movement
- Lab: Running a Simulation with Spreadsheet Data
- Lab: Displaying Results in Results Viewer
- Knowledge Check: Working with Motion Results

- Submechanisms
- Working with Submechanisms
- Lab: Adding a Submechanism
- Adding Override Properties to Submechanisms
- Lab: Adding Override Properties to Submechanisms
- Mapping Submechanism Geometry
- Lab: Mapping Submechanism Geometry
- Knowledge Check: Working with Submechanisms

- Assessment: Motion Fundamentals

Chapter

- Discrete Drivetrain - 2020.2

Learn how to create chain, track, and cable models for Motion analysis.

Learn how to create chain, track, and cable models for Motion analysis.

- Introduction to Discrete Drivetrain
- Defining Discrete Drivetrain Layout Elements
- Defining Discrete Drivetrain Pattern Elements
- Defining Discrete Drivetrain Advanced Reporting
- Defining Discrete Drivetrain Pre-tension and Sag
- Creating a Chain Model
- Lab: Creating a Chain Model
- Creating a Track Model
- Solving a Track Model
- Lab: Creating a Track Model
- Creating a Cable Model
- Lab: Creating a Cable Model
- Knowledge Check: Discrete Drivetrain

Chapters

- Introducing Simcenter 3D Multiphysics
- Meshing for thermal analysis
- Defining thermal boundary conditions
- Defining thermal contacts
- Steady state and transient thermal analysis
- Assessment: Fundamentals of thermal analysis in Simcenter 3D

Learn how to use the basic capabilities of Simcenter 3D Thermal Multiphysics to perform sophisticated thermal analysis.

Learn how to use the basic capabilities of Simcenter 3D Thermal Multiphysics to perform sophisticated thermal analysis.

- Introducing Simcenter 3D Multiphysics
- Introducing Simcenter 3D Multiphysics workflow
- Lab: Simulation process in Simcenter 3D Pre/Post
- Heat transfer concepts
- Assessment: Introducing thermal analysis in Simcenter 3D Multiphysics

- Selecting a mesh and element types
- Defining a mesh for thermal analysis
- Creating mesh and defining material and physical properties for a thermal models
- Lab: Create multiple mesh types
- Lab: Create physical properties for a heat exchanger model
- Working with mesh
- Lab: Create mesh mating conditions and mesh controls
- Lab: Resolve mesh quality issues
- Assessment: Meshing for thermal analysis

- Defining thermal loads
- Defining thermal constraints
- Applying thermal boundary conditions
- Lab: Define thermal boundary conditions
- Assessment: Defining thermal boundary conditions

- Thermal coupling
- Selecting primary and secondary regions
- Lab: Perform a heat transfer analysis between a chip, PCB and casting
- Thermal coupling types
- Defining thermal contacts
- Lab: Create thermal coupling boundary conditions
- Assessment: Defining thermal contacts

- Solution setups for steady state and transient analysis
- Steady state analysis
- Setting up and solving a steady state solution
- Lab: Define a thermostat in a steady state solution
- Controlling transient solution
- Defining time steps in transient solutions
- Principle Lab: Thermal transient analysis of a power supply
- Lab Answer: Thermal transient analysis of a power supply
- Setting up a transient solution from a condition sequence
- Lab: Post process transient results
- Assessment: Steady state and transient thermal analysis

- Assessment: Fundamentals of thermal analysis in Simcenter 3D

Chapters

- Coupled thermal-structural analysis
- Multiphysics analysis of turbomachines
- Assessment: Thermal-structural analysis in Simcenter 3D Multiphysics

Analyze a general thermal-structural model, use advanced modeling features to perform a thermal-structural analysis of turbomachinery in hybrid 2D/3D models.

Analyze a general thermal-structural model, use advanced modeling features to perform a thermal-structural analysis of turbomachinery in hybrid 2D/3D models.

- Structural analysis in Simcenter 3D Multiphysics
- Lab: Set up and run a structural solution
- Coupled thermal-structural analysis
- Setting up a thermal-structural solution
- Post-processing thermal-structural results
- Lab: Set up and run a coupled thermal-structural solution
- Lab: Thermal-structural analysis of the fog lamp
- Lab answer: Thermal-structural analysis of the for lamp
- Assessment: Coupled thermal-structural analysis

- Multiphysics analysis of turbomachines
- Defining thermal streams, voids and convecting zones
- Create thermal boundary conditions for an aeroengine compressor
- Using condition sequences in turbomachinery modeling
- Create a solution from a condition sequence
- Using axisymmetric and non-axisymmetric elements
- Creating the axisymmetric models with non-axisymmetric parts
- Lab: Create physical properties and elements for an axisymmetric model
- Lab: Create an axisymmetric model
- Creating hybrid 2D and 3D models
- Setting up a hybrid 2D and 3D model
- Lab: Set up a hybrid 2D and 3D thermal model
- Multiphysics analysis of turbomachines

- Assessment: Thermal-structural analysis in Simcenter 3D Multiphysics

Chapters

- Flexible Body Analysis with Automatic Flex - 2020.2
- Flexible Body Analysis with Flexible Body - 2020.2
- Flexible Body Post-processing - 2020.2
- Assessment: Flexible Body Analysis - 2020.2

Learn how to analyze and post-process flexible motion bodies.

Learn how to analyze and post-process flexible motion bodies.

- Introduction to Flexible Bodies
- Flexible Body Analysis Using Automatic Flex
- Using Automatic Flex to Create a Flexible Body
- Lab: Using Automatic Flex to Create a Flexible Body
- Lab: Adding Flexibility to a Model using Automatic Flex with Mesh
- Lab Solution: Adding Flexibility to a Model using Automatic Flex with Mesh
- Knowledge Check: Flexible Body Analysis with Automatic Flex

- Flexible Body Analysis Using Flexible Body
- Using Flexible Body to Create a Flexible Body
- Lab: Using Flexible Body to Create a Flexible Body
- Knowledge Check: Flexible Body Analysis with Flexible Body

- Flexible Body Post-processing
- Post Processing Flexible Bodies
- Lab: Post Processing Flexible Bodies
- Knowledge Check: Flexible Body Post-processing

- Assessment: Flexible Body Analysis

Chapters

- Radiation modeling
- 1D hydraulic network modeling
- Articulation and motion modeling
- Joule heating and Peltier cooler
- Customize the thermal solver
- Assessment: Advanced thermal modeling applications

Learn how to model advanced radiation, 1D hydraulic network, articulation, Joule heating, Peltier cooling and how to extend the solver functionality.

Learn how to model advanced radiation, 1D hydraulic network, articulation, Joule heating, Peltier cooling and how to extend the solver functionality.

- Understanding thermal radiation
- Radiation exchange
- Radiation modeling
- Defining enclosure and radiative heating
- Lab: Explore advanced thermo-optical properties for radiation modeling
- Assessment: Radiation modeling

- 1D hydraulic duct networks
- How the thermal solver computes ducts
- Creating a 1D mesh duct network and modeling the cooling of a 2D shell heat exchanger
- Lab: Create 1D duct network in a mold
- Analyzing forced convection in a heat exchanger using immersed ducts
- Lab: Create duct boundary conditions on a model
- Assessment: 1D hydraulic network modeling

- Articulation and motion modeling in heat transfer analysis
- How the thermal solver computes articulation
- Modeling the thermal effects of moving parts
- Lab: Model the robot arm motion using articulation
- Assessment: Articulation and motion modeling

- Joule heating and Peltier cooler modeling
- Modeling Joule heating
- Lab: Model Joule heating
- Lab: Model a Peltier cooler
- Assessment: Joule heating and Peltier cooler

- Extending the solver functionality with a user-written subroutine
- Lab: Using a user written subroutine define a thermostat
- Customizing the thermal solver using plugin functions
- Including and running the plugin function in a solve
- Lab: Using a plugin function to specify a heat transfer coefficient
- Knowledge check: Customize the thermal solver

- Assessment: Advanced thermal modeling applications

Chapters

- Learning Experience Overview
- Analyzing Models in Simcenter 3D Pre/Post - 2021.1
- Managing Analysis Data in Simcenter 3D Files - 2021.1
- Using Pre/Post Features to Work with Models - 2021.1

Learn how to analyze a model and work with analysis data in Simcenter 3D.

Learn how to analyze a model and work with analysis data in Simcenter 3D.

- Welcome: Navigation Overview
- Fundamentals of using Pre/Post Intro

- What Can You Do with Pre/Post?
- Finite Element Analysis in Simcenter 3D
- Finite Element Analysis in Simcenter 3D
- Assessment: Analyzing Models in Simcenter 3D and Pre/Post

- Simcenter 3D Files Overview
- Defining the Pre/Post Model
- Idealizing the Model's Geometry
- Meshing the Model
- Applying Boundary Conditions
- Solving the Model and Post-processing
- Lab: Using Simcenter 3D Files in an Analysis
- Assessment: Managing Analysis Data in Simcenter 3D Files

- Working with a Model using the Pre/Post User Interface
- Using the Simulation Navigator to Work with Your Model
- Lab: Working with a Model Using the Pre/Post User Interface
- Displaying a Model
- Lab: Displaying a Model
- Selecting Objects
- Using Selection Recipes
- Lab: Selecting Objects
- Using Groups
- Lab: Using Groups
- Working with Coordinate Systems
- Lab: Working with Coordinate Systems
- Assessment: Using Pre/Post Features to Work with Models
- Thank you for watching Fundamentals of using Pre/Post

Chapters

- Preparing Geometry for Meshing - 2021.1
- Meshing a Model - 2021.1
- Modeling Connections - 2021.1
- Modeling Assemblies - 2021.1
- Applying Boundary Conditions - 2021.1
- Defining Variable Conditions and Properties - 2021.1
- Modeling Symmetry - 2021.1
- Checking the Model and Resolving Problems - 2021.1

Learn how to prepare a model for analysis by working with geometry, meshes, connections, assemblies, loads, and boundary conditions.

- Loading a Model into Simcenter 3D
- Preparing Geometry for Meshing
- Using Synchronous Modeling to Model Parts
- Lab: Using Synchronous Modeling to Modify Parts
- Simplifying Geometry with Idealization
- Lab: Creating Midsurfaces before Meshing
- Simplifying Geometry with Abstraction
- Lab: Simplifying Geometry with Abstraction
- Working with Associative Copies of Geometry
- Lab: Working with Associative Copies of Geometry
- Lab: Simplifying Geometry for Meshing
- Lab Solution: Simplifying Geometry for Meshing
- Assessment: Preparing Geometry

- Selecting a Mesh and Element Type
- Creating a Mesh
- Lab: Creating a 3D Tetrahedral Mesh
- Using Mesh Collectors to Organize the Model
- Lab: Using Mesh Collectors to Organize the Model
- Defining Material Properties for a Mesh
- Lab: Defining Material Properties for a Mesh
- Lab: Defining Physical Properties for a Mesh
- Creating a 3D Hexahedral Mesh
- Lab: Creating a 3D Hexahedral Mesh
- Splitting Complex Bodies for Hexahedral Meshing
- Creating a 2D Mesh
- Lab: Creating a 2D Mesh
- Creating a 2D Mapped Mesh
- Lab: Creating a 2D Mapped Mesh
- Creating a 1D Mesh
- Lab: Creating a 1D Mesh
- Controlling the Mesh Display
- Creating Mesh Mating Conditions to Connnect Meshes
- Lab: Creating Mesh Mating Conditions
- Editing Meshes with Manual Mesh Techniques
- Lab: Editing Meshes with Manual Mesh Techniques
- Controlling Mesh Density
- Lab: Controlling Mesh Density
- Setting Element Size and Surface Curvature
- Lab: Modifying Element Size
- Lab: Creating a Structured Mesh
- Lab Solution: Creating a Structured Mesh
- Assessment: Meshing

- Modeling Connections
- Modeling Pinned Connections
- Lab: Modeling Pinned Connections
- Modeling Connections with Spider Elements
- Lab: Modeling Connections with Spider Elements
- Modeling Glue Connections
- Lab: Modeling Edge-Surface Glue Connections
- Lab: Modeling Surface-Surface Glue Connections
- Modeling Bolted Connections
- Modeling Bolted Connections Using Nuts
- Lab: Modeling a Bolted Connection with a Nut
- Modeling a Tapped Bolted Connection
- Lab: Modeling a Tapped Bolted Connection
- Lab: Applying Bolt Pre-loads
- Creating Universal Connections
- Lab: Creating Universal Connections
- Lab: Connecting Bodies
- Lab Answer: Connecting Bodies
- Assessment: Modeling Connections

- Modeling Assemblies
- Modeling an Assembly FEM from a CAD Assembly
- Modeling an Assembly FEM without a CAD Assembly
- Lab: Modeling an Associative Assembly FEM
- Lab: Modeling a Non-associative Assembly FEM
- Assessment: Modeling Assemblies

- Applying Boundary Conditions
- Nastran Structural Loads
- Nastran Structural Constraints
- Applying Loads
- Applying Constraints
- Lab: Applying Loads and Constraints
- Applying Contact
- Lab: Applying Contact
- Lab: Applying Boundary Conditions
- Lab Answer: Applying Boundary Conditions
- Assessment: Applying Boundary Conditions

- Using Fields
- Types of Fields
- Using Fields to Define Boundary Conditions
- Lab: Using Fields to Define a Boundary Condition
- Using a Spatial Map Field to Define a Boundary Condition
- Lab: Using a Spatial Map Field to Define a Boundary Condition
- Using a Field to Define Material Properties
- Lab: Using a Field to Define Nonlinear Material Properties
- Displaying Fields
- Lab: Displaying Fields
- Using Expressions
- Lab: Using Expressions to Define Boundary Conditions
- Lab: Defining a Variable Boundary Condition
- Lab Solution: Defining a Variable Boundary Condition
- Assessment: Defining Variable Conditions and Properties

- Symmetry Modeling Overview
- Lab: Modeling a Cyclic Symmetric Structure
- Lab: Modeling an Axisymmetric Structure
- Lab: Using Plane Stress Elements in a Axisymmetric Analysis
- Knowledge Check: Modeling Symmetry

- Checking Mesh Quality
- Techniques for Resolving Mesh Quality Issues
- Lab: Resolving Mesh Quality Problems
- Checking the Model Before Solving
- Techniques for Resolving Model Quality Issues
- Lab: Resolving Model Quality Issues
- Assessment: Checking the Model and Resolving Problems

Chapters

- Setting Up and Running a Structural Analysis - 2021.1
- Introduction to Structural Analysis Workflows - 2021.1
- Introduction to Nonlinear Analysis Workflows - 2021.1

Learn how to solve a model with the Simcenter Nastran solver using structural analysis types.

Learn how to solve a model with the Simcenter Nastran solver using structural analysis types.

- Using Solutions and Subcases
- Creating Solutions and Subcases
- Lab: Creating Solutions and Subcases
- Defining Solution Attributes
- Setting Solver Parameters
- Solving the Model
- Dealing with Common Solver Errors
- Validating Results
- Assessment: Setting Up and Running a Structural Analysis

- Structural Analysis Overview
- Linear Statics Analysis Workflow
- Lab: Linear Statics Analysis Workflow
- Normal Modes Analysis Workflow
- Lab: Normal Modes Analysis Workflow
- Using Subcase Versus Global Constraints
- Assessment: Introduction to Structural Analysis Workflows

- Nonlinear Analysis Overview
- Setting Up a Nonlinear Solution
- Lab: Geometric Nonlinear Analysis
- Using Time Steps in a Nonlinear Solution
- Lab: Using Timesteps in a Nonlinear Solution
- Evaluating Nonlinear Models
- Lab: Evaluating Nonlinear Models
- Assessment: Introduction to Nonlinear Analysis Workflows

Chapters

- Displaying Results in Post Views - 2021.2
- Manipulating Results Data - 2021.2
- Graphing Results - 2021.2
- Saving and Restoring Views - 2021.2
- Generating Reports - 2021.2
- Assessment: Reviewing Analysis Results - 2021.2

Learn how to display analysis results using post views, graphs, and reports.

Learn how to display analysis results using post views, graphs, and reports.

- Displaying Results Overview
- Displaying Results in Post Processing
- Displaying Results in a Post View
- Lab: Displaying Results in a Post View
- Controlling Visibility in Post Views
- Lab: Controlling Visibility in Post Views
- Displaying Results in Multiple Viewports
- Lab: Displaying Results in Multiple Viewports
- Animating Results
- Lab: Animating Results
- Annotating Results
- Lab: Annotating Results
- Displaying More Results in Post Processing
- Displaying Stress/Strain Results on 2D Elements
- Lab: Displaying Stress/Strain Results on 2D Elements
- Calculating and Displaying Beam Stresses
- Lab: Displaying Beam Stresses
- Displaying Symmetry Results in a Post View
- Lab: Displaying Axisymmetric Results in a Post View
- Displaying Results in the Results Viewer
- Lab: Displaying Results in Post Views
- Lab Solution: Displaying Results in Post Views
- Assessment: Displaying Results in Post Views

- Manipulating Results Data Overview
- Identifying and Outputting Results
- Lab: Identifying and Outputting Results
- Creating Custom Results
- Lab: Creating Custom Results
- Combining and Enveloping Results
- Lab: Enveloping and Combining Results
- Creating Nodal Force Reports
- Lab: Creating Nodal Force Reports
- Assessment: Manipulating Results Data

- Graphing Overview
- Graphing Results Across FE Entities
- Lab: Graphing Results Across FE Entities
- Graphing Results Using a Query Curve
- Lab: Graphing Results Using a Query Curve
- Graphing Results Across Iterations
- Lab: Graphing Results Across Multiple Iterations
- Plotting Two Functions
- Lab: Plotting Two Functions
- Modifying Graph Display Properties
- Lab: Modifying Graph Display Properties
- Lab: Graphing Results
- Lab Answer: Graphing Results
- Assessment: Graphing Results

- Saving and Restoring Views
- Saving and Restoring Layout States to Set Up Views
- Lab: Saving and Restoring Layout States to Set Up Views
- Saving and Restoring Post View Settings
- Lab: Saving and Restoring Post View Settings
- Assessment: Saving and Restoring Views

- Introduction to Creating Reports
- Generating a Report
- Customizing a Report Template
- Assessment: Generating Reports

- Assessment: Reviewing Analysis Results

Chapters

- Adaptive Meshing - 2021.2
- Superelements - 2021.2
- Introduction to Thermal Analysis - 2021.2
- Geometry Optimization - 2021.2
- Simcenter Nastran Design Optimization - 2021.2
- Simcenter Nastran Topology Optimization - 2021.2
- Assessment: Processes and Solutions - 2021.2

Learn how to analyze models using specialized Simcenter 3D tools.

Learn how to analyze models using specialized Simcenter 3D tools.

- Adaptive Meshing Overview
- Refining a Mesh with Adaptive Meshing
- Lab: Refining a Mesh with Adaptive Meshing
- Assessment: Adaptive Meshing

- Superelement Analysis Overview
- Reducing a Subassembly to a Superelement
- Lab: Reducing a Subassembly to a Superelement
- System Modeling with External Superelements Overview
- Modeling with External Superelements
- Lab: Modeling with External Superelements
- Assessment: Superelements

- Thermal Analysis Overview
- Setting Up and Solving a Thermal Analysis
- Lab: Setting Up and Solving a Thermal Analysis
- Assessment: Introduction to Thermal Analysis

- Geometry Optimization Overview
- Geometry Optimization Workflow
- Lab: Geometry Optimization
- Assessment: Geometry Optimization

- Simcenter Nastran Design Optimization Overview
- Setting up the Model for Nastran Design Optimization
- Creating Constraints and Solving for Simcenter Nastran Design Optimization
- Lab: Simcenter Nastran Design Optimization
- Assessment: Design Optimization

- Simcenter Nastran Topology Optimization Overview
- Simcenter Nastran Topology Optimization Workflow
- Lab: Simcenter Nastran Topology Optimization
- Assessment: Simcenter Nastran Topology Optimization

- Assessment: Processes and Solutions

Chapter

- Response Dynamics - 2021.2

Learn how to use response dynamics to analyze a model's response to an excitation.

Learn how to use response dynamics to analyze a model's response to an excitation.

- Response Dynamics Overview
- Setting Up and Solving a Response Dynamics Analysis
- Lab: Part 1: Setting Up and Solving a Response Dynamics Analysis
- Solving a Transient Analysis
- Lab: Part 2: Solving a Response Dynamics Transient Analysis
- Analyzing a Random Event
- Lab: Analyzing a Random Event
- Part 1: Analyzing Response to Harmonic and PSD Excitations
- Part 2: Analyzing Response to Harmonic and PSD Excitations
- Lab: Analyzing Response to Harmonic and PSD Excitations
- Assessment: Introduction to Response Dynamics Analysis

Chapters

- Analysis with Simcenter 3D/Simcenter Nastran FEM Acoustics
- Meshing Acoustics Models
- Setting Up and Solving Acoustics Solutions
- Model and Load Pre-Processing
- Using Alternate Component Representations
- Assessment: Working-with-Simcenter-3D/Simcenter-Nastran-FEM-Acoustics

This learning path teaches users how to prepare a Simcenter 3D / Simcenter Nastran FEM Acoustics model and review analysis results.

This learning path teaches users how to prepare a Simcenter 3D / Simcenter Nastran FEM Acoustics model and review analysis results.

- Introduction to Simcenter 3D / Simcenter Nastran FEM Acoustics
- Analyzing an Acoustics Model in Simcenter 3D / Simcenter Nastran FEM Acoustics
- Lab: Analyzing an Acoustics Model in Simcenter 3D/Simcenter Nastran FEM Acoustics
- Analysis with the Simcenter 3D Noise and Vibration Solver
- Knowledge Check: Introduction to Simcenter 3D/Simcenter Nastran FEM Acoustics

- Meshes for Acoustic Models
- Acoustic Mesh Types
- Meshing Structural Models
- Lab: Meshing Structural Models
- Meshing for Interior Acoustic Analysis
- Lab: Generating Meshes for Interior Acoustic Analysis
- Meshing for External Acoustic Analysis
- Lab: Generating Meshes for Exterior Acoustic Analysis
- Creating a Microphone Mesh
- Lab: Creating a Microphone Mesh
- Acoustic Materials
- Lab: Meshing an Acoustics Model
- Lab Solution: Meshing an Acoustics Model
- Lab: Meshing Vibro-acoustics Model
- Lab Solution Part 1: Meshing a Vibro-acoustics Model
- Lab Solution Part 2: Meshing a Vibro-acoustics Model
- Knowledge Check: Meshing an Acoustics Model

- Setting Up and Solving an Acoustics Model
- Solution Types for Simcenter 3D / Simcenter Nastran FEM Acoustics
- Solution Parameters for Simcenter 3D / Simcenter Nastran FEM Acoustics
- Lab: Setting Up and Solving an Acoustics Model
- Boundary Conditions for Simcenter 3D / Simcenter Nastran Acoustics FEM
- Creating Boundary Conditions for Acoustics Analysis
- Lab: Creating a Boundary Condition for Acoustics Analysis
- Creating Loads for Acoustics Analysis
- Lab: Creating Loads for Acoustics Analysis
- Creating Constraints for Acoustics Analysis
- Lab: Creating Constraints for Acoustics Analysis
- Simulation Objects for Simcenter 3D / Simcenter Nastran FEM Acoustics
- Creating Simulation Objects for Acoustics Analysis
- Lab: Creating Simulation Objects for Acoustics Analysis
- Solving the Acoustics Model and Reviewing Acoustics Analysis Results
- Post Processing Scenarios
- Lab: Setting Up and Solving a Vibro-Acoustic Analysis
- Lab Solution: Part 1: Setting Up and Solving a Vibro-Acoustics Analysis
- Lab Solution: Part 2: Setting Up and Solving a Vibro-Acoustics Analysis
- Knowledge Check: Setting Up and Solving an Acoustics Solution

- Model and Load Pre-Processing
- Transforming External Result Data for Acoustics Loads
- Lab: Using CFD Data to Create Fan Noise Loads
- Knowledge Check: Model and Load Pre-Processing

- Using Alternate Component Representations in Acoustics Models
- Creating a Mode Set to Represent a Structural Model
- Lab: Creating a Mode Set to Represent a Structural Model
- Creating an ATV Set to Represent an Acoustics Model
- Lab: Creating an ATV Set to Represent an Acoustics Model
- Evaluating MATV Response Using Noise and Vibration
- Lab: Evaluating MATV Response Using Noise and Vibration
- Creating and Using an FRF Set in a Vibro-Acoustic Analysis
- Lab: Creating and Using an FRF Set in a Vibro-Acoustic Analysis
- KC: Using Alternate Component Representations

- Assessment: Working-with-Simcenter-3D/Simcenter-Nastran-FEM-Acoustics

Chapters

- Gearbox Noise Radiation
- Transmission Loss Using Duct Modes
- Panel Transmission Loss
- Electric Motor Noise
- Pass-By Noise
- Satellite Vibration
- Assessment: Applications of Simcenter 3D / Simcenter Nastran FEM Acoustics

This learning path teaches users how to apply Simcenter 3D/Simcenter Nastran FEM Acoustics analysis to solve problems in industry.

This learning path teaches users how to apply Simcenter 3D/Simcenter Nastran FEM Acoustics analysis to solve problems in industry.

- Analyzing Gearbox Noise Radiation
- Lab: Analyzing Motion to Acoustics Gearbox Noise
- Lab Solution: Setting up the Gearbox Model
- Lab Solution: Setting Up the Acoustic Model
- Lab Solution: Analyzing and Mapping Data
- Lab Solution: Setting Up and Solving the Vibro-acoustics Model
- Knowledge Check: Gearbox Noise Radiation

- Analyzing Transmission Loss with Duct Modes
- Lab: Analyzing Transmission Loss of a Muffler Using Duct Modes
- Lab Solution: Setting Up the Finite Element Model
- Lab Solution: Setting Up and Solving the Solution
- Lab Solution: Reviewing Results
- Knowledge Check: Transmission Loss Using Duct Modes

- Analyzing Panel Transmission Loss
- Lab: Analyzing Aircraft Panel Transmission Loss
- Lab Solution: Setting up the Acoustic Model
- Lab Solution: Setting Up the Solution
- Lab Solution: Reviewing Results
- Lab Solution: Applying Static Pressure and Temperature
- Lab Solution: Reviewing Static Pressure and Temperature Results
- Lab Solution: Analyzing Narrow Band Results
- Knowledge Check: Panel Transmission Loss

- Analyzing Electric Motor Noise
- Lab: Analyzing Electric Motor Noise
- Lab Solution: Analyzing Electric Motor Noise
- Knowledge Check: Electric Motor Noise

- Analyzing Pass By Noise
- Lab: Analyzing Car Engine Bay Noise
- Lab Solution: Setting Up the Acoustic Solution
- Lab Solution: Setting Up the Acoustic Objects
- Lab Solution: Reviewing Acoustic Results
- Knowledge Check: Pass By Noise

- Analyzing Satellite Vibration
- Lab: Analyzing Response to Random Excitation of a Satellite
- Lab Solution: Setting Up the Satellite Model
- Lab Solution: Solving and Reviewing Results
- Lab Solution: Creating the Random Vibro-Acoustic Solution
- Lab Solution: Defining the AML and Plane Waves
- Lab Solution: Setting Up the PSD Solution
- Lab Solution: Solving and Reviewing Results
- Knowledge Check: Satellite Vibration

- Assessment: Applications of Simcenter 3D / Simcenter Nastran FEM Acoustics

Chapters

- Ray Acoustics
- Parking Sensor Simulation
- Interior Acoustics and Particle Tracing
- Assessment: Ray Acoustics

This learning path teaches users how to prepare a Ray Acoustics model, solve it, and review analysis results.

This learning path teaches users how to prepare a Ray Acoustics model, solve it, and review analysis results.

- Introduction to Simcenter 3D Ray Acoustics
- Ray Acoustics Analysis Theory
- Meshing a Ray Acoustics Model
- Setting Up a Ray Acoustics Model
- Reviewing Ray Acoustics Results
- Analyzing a Ray Acoustics Model
- Lab: Analyzing a Ray Acoustics Model
- Knowledge Check: Ray Acoustics

- Introduction to Parking Sensor Simulation
- Lab: Parking Sensor Simulation
- Lab Solution: Exploring the FE Model and Directionality Field
- Lab Solution: Setting Up and Solving the Ray Acoustics Simulation
- Lab Solution: Exploring Results
- Knowledge Check: Parking Sensor Simulation

- Introduction to Interior Acoustics and Particle Tracing
- Lab: Car Audio Simulation
- Lab Solution: Analyzing a Car Audio Problem
- Knowledge Check: Interior Acoustics and Particle Tracing

- Assessment: Ray Acoustics

Chapters

- Learning Experience Overview
- Analyzing Models in Simcenter 3D Pre/Post - 2022.1
- Managing Analysis Data in Simcenter 3D Files - 2022.1
- Using Pre/Post Features to Work with Models - 2022.1
- Assessment: Fundamentals of Using Pre/Post - 2022.1

Learn how to analyze a model and work with analysis data in Simcenter 3D.

Learn how to analyze a model and work with analysis data in Simcenter 3D.

- Welcome: Navigation Overview
- Fundamentals of using Pre/Post Intro

- What Can You Do with Simcenter 3D Pre/Post?
- Finite Element Analysis in Simcenter 3D
- Finite Element Analysis in Simcenter 3D
- Knowledge Check: Analyzing Models in Simcenter 3D and Pre/Post

- Simcenter 3D Files Overview
- Working with Simcenter 3D Files in Pre/Post
- Preparing the Model
- Modifying Model Geometry
- Solving the Model and Post-processing
- Lab: Using Simcenter 3D Files in an Analysis
- Knowledge Check: Managing Analysis Data in Simcenter 3D Files

- Using Pre/Post Features
- Using Simcenter 3D Search
- Using the Simulation Navigator to Work with Your Model
- Lab: Working with a Model Using the Pre/Post User Interface
- Displaying a Model
- Lab: Displaying a Model
- Selecting Objects
- Using Selection Recipes
- Lab: Selecting Objects
- Using Groups
- Lab: Using Groups
- Working with Coordinate Systems
- Lab: Working with Coordinate Systems
- Knowledge Check: Using Pre/Post Features to Work with Models
- Thank you for watching Fundamentals of using Pre/Post

- Assessment: Fundamentals of Using Pre/Post

Chapters

- Preparing Geometry for Meshing - 2022.1
- Meshing a Model - 2022.1
- Modeling Connections - 2022.1
- Modeling Assemblies - 2022.1
- Applying Boundary Conditions - 2022.1
- Defining Variable Conditions and Properties - 2022.1
- Modeling Symmetry - 2022.1
- Checking the Model and Resolving Problems - 2022.1
- Assessment: Preparing the Model for Analysis - 2022.1

- Loading a Model into Simcenter 3D
- Preparing Geometry for Meshing
- Using Synchronous Modeling to Model Parts
- Lab: Using Synchronous Modeling to Modify Parts
- Simplifying Geometry with Idealization
- Lab: Creating Midsurfaces before Meshing
- Simplifying Geometry with Abstraction
- Lab: Simplifying Geometry with Abstraction
- Working with Associative Copies of Geometry
- Lab: Working with Associative Copies of Geometry
- Lab: Simplifying Geometry for Meshing
- Lab Solution: Simplifying Geometry for Meshing
- Knowledge Check: Preparing Geometry

- Selecting a Mesh and Element Type
- Creating a Mesh
- Lab: Creating a 3D Tetrahedral Mesh
- Using Mesh Collectors to Organize the Model
- Lab: Using Mesh Collectors to Organize the Model
- Defining Material Properties for a Mesh
- Lab: Defining Material Properties for a Mesh
- Lab: Defining Physical Properties for a Mesh
- Creating a 3D Hexahedral Mesh
- Splitting Complex Bodies for Hexahedral Meshing
- Lab: Creating a 3D Hexahedral Mesh
- Creating a 2D Mesh
- Lab: Creating a 2D Mesh
- Creating a 2D Mapped Mesh
- Lab: Creating a 2D Mapped Mesh
- Creating a 1D Mesh
- Lab: Creating a 1D Mesh
- Controlling the Mesh Display
- Creating Mesh Mating Conditions to Connnect Meshes
- Lab: Creating Mesh Mating Conditions
- Editing Meshes with Manual Mesh Techniques
- Lab: Editing Meshes with Manual Mesh Techniques
- Controlling Mesh Density
- Lab: Controlling Mesh Density
- Setting Element Size and Surface Curvature
- Lab: Modifying Element Size
- Lab: Creating a Structured Mesh
- Lab Solution: Creating a Structured Mesh
- Knowledge Check: Meshing

- Modeling Connections
- Modeling Pinned Connections
- Lab: Modeling Pinned Connections
- Modeling Connections with Spider Elements
- Lab: Modeling Connections with Spider Elements
- Modeling Glue Connections
- Lab: Modeling Edge-Surface Glue Connections
- Lab: Modeling Surface-Surface Glue Connections
- Modeling Bolted Connections
- Modeling Bolted Connections Using Nuts
- Lab: Modeling a Bolted Connection with a Nut
- Lab: Applying Bolt Pre-loads
- Creating Universal Connections
- Lab: Modeling Universal Connections
- Lab: Connecting Bodies
- Lab Solution: Connecting Bodies
- Lab: Modeling Bolt Universal Connections
- Lab Solution: Modeling Bolt Universal Connections
- Knowledge Check: Modeling Connections

- Modeling Assemblies
- Modeling an Assembly FEM from a CAD Assembly
- Modeling an Assembly FEM without a CAD Assembly
- Lab: Modeling an Associative Assembly FEM
- Lab: Modeling a Non-associative Assembly FEM
- Knowledge Check: Modeling Assemblies

- Applying Boundary Conditions
- Nastran Structural Loads
- Nastran Structural Constraints
- Applying Loads
- Applying Constraints
- Lab: Applying Loads and Constraints
- Applying Contact
- Lab: Applying Contact
- Lab: Applying Boundary Conditions
- Lab Solution: Applying Boundary Conditions
- Knowledge Check: Applying Boundary Conditions

- Using Fields
- Types of Fields
- Using Fields to Define Boundary Conditions
- Lab: Using Fields to Define a Boundary Condition
- Using a Spatial Map Field to Define a Boundary Condition
- Lab: Using a Spatial Map Field to Define a Boundary Condition
- Using a Field to Define Material Properties
- Lab: Using a Field to Define Nonlinear Material Properties
- Displaying Fields
- Lab: Displaying Fields
- Using Expressions
- Defining Expressions
- Lab: Using Expressions to Define Boundary Conditions
- Lab: Defining a Variable Boundary Condition
- Lab Solution: Defining a Variable Boundary Condition
- Knowledge Check: Defining Variable Conditions and Properties

- Symmetry Modeling Overview
- Lab: Modeling a Cyclic Symmetric Structure
- Lab: Modeling an Axisymmetric Structure
- Lab: Using Plane Stress Elements in a Axisymmetric Analysis
- Knowledge Check: Modeling Symmetry

- Checking Mesh Quality
- Techniques for Resolving Mesh Quality Issues
- Lab: Resolving Mesh Quality Problems
- Checking the Model Before Solving
- Techniques for Resolving Model Quality Issues
- Lab: Resolving Model Quality Issues
- Knowledge Check: Checking the Model and Resolving Problems

- Assessment: Preparing the Model for Analysis

Chapters

- Setting Up and Running a Structural Analysis - 2022.1
- Introduction to Structural Analysis Workflows - 2022.1
- Introduction to Nonlinear Analysis Workflows - 2022.1
- Assessment: Solving the Model - 2022.1

Learn how to solve a model with the Simcenter Nastran solver using structural analysis types.

Learn how to solve a model with the Simcenter Nastran solver using structural analysis types.

- Using Solutions and Subcases
- Creating Solutions and Subcases
- Lab: Creating Solutions and Subcases
- Defining Solution Attributes
- Setting Solver Parameters
- Solving the Model
- Dealing with Common Warnings from the Solve
- Determining the Validity of Results
- Knowledge Check: Setting Up and Running a Structural Analysis

- Structural Analysis Overview
- Linear Statics Analysis Workflow
- Lab: Linear Statics Analysis Workflow
- Normal Modes Analysis Workflow
- Lab: Normal Modes Analysis Workflow
- Using Subcase Constraints Versus Global Constraints
- Linear Buckling Analysis Overview
- Linear Buckling Analysis Workflow
- Lab: Linear Buckling Analysis Workflow
- Knowledge Check: Introduction to Structural Analysis Workflows

- Nonlinear Analysis Overview
- Setting Up a Nonlinear Solution
- Lab: Geometric Nonlinear Analysis
- Using Time Steps in a Nonlinear Solution
- Lab: Using Timesteps in a Nonlinear Solution
- Evaluating Nonlinear Models
- Lab: Evaluating Nonlinear Models
- Knowledge Check: Introduction to Nonlinear Analysis Workflows

- Assessment: Solving the Model

Chapter

- Response Dynamics - 2022.1

Learn how to use response dynamics to analyze a model's response to an excitation.

Learn how to use response dynamics to analyze a model's response to an excitation.

- Response Dynamics Overview
- Setting Up and Solving a Response Dynamics Analysis
- Lab: Part 1: Setting Up and Solving a Response Dynamics Analysis
- Solving a Transient Analysis
- Lab: Part 2: Solving a Response Dynamics Transient Analysis
- Analyzing a Random Event
- Lab: Analyzing a Random Event
- Part 1: Analyzing Response to Harmonic and PSD Excitations
- Part 2: Analyzing Response to Harmonic and PSD Excitations
- Lab: Analyzing Response to Harmonic and PSD Excitations
- Assessment: Introduction to Response Dynamics Analysis

Chapters

- Adaptive Meshing
- Superelements
- Introduction to Thermal Analysis
- Geometry Optimization
- Simcenter Nastran Design Optimization
- Simcenter Nastran Topology Optimization
- Assessment: Processes and Solutions

Learn how to analyze models using specialized Simcenter 3D tools.

Learn how to analyze models using specialized Simcenter 3D tools.

- Adaptive Meshing Overview
- Refining a Mesh with Adaptive Meshing
- Lab: Refining a Mesh with Adaptive Meshing
- Knowledge Check: Adaptive Meshing

- Superelement Analysis Overview
- Reducing a Subassembly to a Superelement
- Lab: Reducing a Subassembly to a Superelement
- System Modeling with External Superelements Overview
- Modeling with External Superelements
- Lab: Modeling with External Superelements
- Knowledge Check: Superelements

- Thermal Analysis Overview
- Setting Up and Solving a Thermal Analysis
- Lab: Setting Up and Solving a Thermal Analysis
- Knowledge Check: Introduction to Thermal Analysis

- Geometry Optimization Overview
- Geometry Optimization Workflow
- Lab: Geometry Optimization
- Knowledge Check: Geometry Optimization

- Simcenter Nastran Design Optimization Overview
- Setting up the Model for Nastran Design Optimization
- Creating Constraints and Solving for Simcenter Nastran Design Optimization
- Lab: Simcenter Nastran Design Optimization
- Knowledge Check: Design Optimization

- Simcenter Nastran Topology Optimization Overview
- Simcenter Nastran Topology Optimization Workflow
- Lab: Simcenter Nastran Topology Optimization
- Knowledge Check: Simcenter Nastran Topology Optimization

- Assessment: Processes and Solutions

Chapters

- Displaying Results in Post Views
- Manipulating Results Data
- Graphing Results
- Saving and Restoring Views
- Generating Reports
- Assessment: Reviewing Analysis Results

Learn how to display analysis results using post views, graphs, and reports.

Learn how to display analysis results using post views, graphs, and reports.

- Displaying Results Overview
- Displaying Results in Post Processing
- Displaying Results in a Post View
- Lab: Displaying Results in a Post View
- Controlling Visibility in Post Views
- Lab: Controlling Visibility in Post Views
- Displaying Results in Multiple Viewports
- Lab: Displaying Results in Multiple Viewports
- Animating Results
- Lab: Animating Results
- Annotating Results
- Lab: Annotating Results
- Displaying More Results in Post Processing
- Displaying Stress/Strain Results on 2D Elements
- Lab: Displaying Stress/Strain Results on 2D Elements
- Calculating and Displaying Beam Stresses
- Lab: Displaying Beam Stresses
- Displaying Symmetry Results in a Post View
- Lab: Displaying Axisymmetric Results in a Post View
- Displaying Results in the Results Viewer
- Lab: Displaying Results in Post Views
- Lab Solution: Displaying Results in Post Views
- Knowledge Check: Displaying Results in Post Views

- Manipulating Results Data Overview
- Identifying and Outputting Results
- Lab: Identifying and Outputting Results
- Creating Custom Results
- Lab: Creating Custom Results
- Combining and Enveloping Results
- Lab: Enveloping and Combining Results
- Creating Nodal Force Reports
- Lab: Creating Nodal Force Reports
- Knowledge Check: Manipulating Results Data

- Graphing Overview
- Graphing Results Across FE Entities
- Lab: Graphing Results Across FE Entities
- Graphing Results Using a Query Curve
- Lab: Graphing Results Using a Query Curve
- Graphing Results Across Multiple Iterations
- Lab: Graphing Results Across Multiple Iterations
- Plotting Two Functions
- Lab: Plotting Two Functions
- Modifying Graph Display Properties
- Lab: Modifying Graph Display Properties
- Lab: Graphing Results
- Lab Solution: Graphing Results
- Knowledge Check: Graphing Results

- Saving and Restoring Views
- Saving and Restoring Snapshots to Set Up Views
- Lab: Using Snapshots to Set Up Views
- Saving and Restoring Post View Settings
- Lab: Saving and Restoring Post View Settings
- Knowledge Check: Saving and Restoring Views

- Introduction to Creating Reports
- Generating a Report
- Customizing a Report Template
- Knowledge Check: Generating Reports

- Assessment: Reviewing Analysis Results

Chapters

- Introducing FE Model Correlation
- Introducing pre-test solution process
- Understanding test analysis reference solution
- Preparing for correlation analysis
- Introducing shape correlation
- Introducing FRF correlation
- Assessment: FE Model Correlation

Learn how to prepare physical tests using the pre-test planning tools and how to correlate modal finite element results with experimental data in Simcenter 3D.

Learn how to prepare physical tests using the pre-test planning tools and how to correlate modal finite element results with experimental data in Simcenter 3D.

- Introducing FE Model Correlation and Updating
- Getting started with Simcenter 3D FE Model Correlation
- Knowledge Check: Introducing FE Model Correlation

- Introducing pre-test solution process
- Understanding pre-test DOFs
- Lab: Create pre-test solution and defining DOFs
- Selecting sensors
- Creating pre-test solution process and solving sensor configuration
- Lab: Define sensor configurations
- Selecting exciters
- Lab: Use a pre-test solution to define exciter locations
- Using a pre-test solution to define exciter locations
- Knowledge Check: Introducing pre-test solution process

- Understanding test analysis reference solution
- Sharing sensor and exciter locations with test engineers
- Lab: Create a test analysis reference solution
- Knowledge Check: Understanding test analysis reference solution

- Understanding correlation solution process
- Creating test and analysis reference solution
- Lab: Manage test and analysis reference data
- Aligning work and reference models
- Performing geometrical correlation of work and reference model
- Lab: Create a correlation solution process
- Lab: Prepare a model for correlation solution process
- Preparing a model for correlation solution process
- Knowledge Check: Preparing for correlation analysis

- Introducing shape correlation
- Managing sensors and working with shape pairs
- Lab: Manage sensors
- Introducing quantitative shape correlation
- Generating and displaying matrix results
- Lab: Visualize shape correlation results
- Correlating shapes of symmetric structures
- Lab: Perform shape correlation of a symmetric structure
- Lab: Compare correlation mode shapes
- Lab: Analyze the shape correlation of an aircraft engine nacelle
- Analyzing the shape correlation of an aircraft engine nacelle
- Knowledge Check: Introducing shape correlation

- Introducing FRF analysis solution
- Creating analysis solution and output request
- Lab: Create an analysis solution with FRF results
- Introducing FRF correlation solution process
- Displaying FRF correlation results
- Creating FRF correlation and displaying overlay FRFs
- Lab: Create FRF correlation
- Creating FRF correlation
- Creating a Synthesized FRF Correlation solution process
- Lab: Create synthesized FRF correlation
- Knowledge Check: Introducing FRF correlation

- Assessment: FE Model Correlation

Chapters

- Analysis with Simcenter 3D BEM Acoustics
- Meshing BEM Acoustics Models
- Setting Up and Solving BEM Acoustics Solutions
- Model and Load Pre-Processing (BEM)
- Using Alternate Component Representations (BEM)
- Using the Noise and Vibration Solver
- Assessment: Working with Simcenter 3D BEM Acoustics

This learning path teaches users how to prepare a Simcenter 3D BEM Acoustics model, solve it, and review analysis results.

This learning path teaches users how to prepare a Simcenter 3D BEM Acoustics model, solve it, and review analysis results.

- Introduction to Simcenter 3D BEM Acoustics
- Analyzing an Acoustic Model in Simcenter 3D BEM Acoustics
- Lab: Analyzing a Vibro-acoustic Model in Simcenter 3D BEM Acoustics
- Knowledge Check: Analysis with Simcenter 3D BEM Acoustics

- Meshes for BEM Acoustics Models
- Creating Meshes from Mesh Primitives
- Meshing for Direct BEM Acoustics Analysis
- Lab: Generating Meshes for Direct BEM Analysis
- Meshing for Indirect BEM Acoustic Analysis
- Lab: Generating Meshes for Indirect BEM Acoustic Analysis
- Acoustic Materials for BEM Acoustics Models
- Lab: Meshing a BEM Acoustics Model
- Lab Solution: Meshing a BEM Acoustics Model
- Knowledge Check: Meshing a Simcenter 3D Acoustics BEM Model

- BEM Acoustics Solution Types
- BEM Acoustics Solution Parameters
- BEM Acoustics Constraints and Loads
- Creating Loads for BEM Acoustics Analysis
- Lab: Creating Loads for BEM Acoustics Analysis
- BEM Acoustics Simulation Objects
- Creating Simulation Objects for BEM Acoustics Analysis
- Lab: Creating Simulation Objects for BEM Acoustics Analysis
- Post Processing Scenario Results Types for BEM Acoustics
- Lab: Setting Up and Solving a BEM Acoustics Solution
- Lab Solution: Setting Up and Solving a BEM Acoustics Solution
- Knowledge Check: Setting Up and Solving a Simcenter 3D Acoustics BEM Solution

- Model and Load Pre-Processing
- Using Model and Load Pre-processing to Apply a Load
- Lab: Using Model and Load Pre-processing to Apply a Turbulent Boundary Layer Load
- Knowledge Check: Model and Load Pre-Processing

- Using Alternate Component Representations in Acoustic Models
- Creating a Mode Set
- Lab: Creating a Mode Set
- Using a Mode Set in an Acoustic Analysis
- Lab: Using a Mode Set in a BEM Acoustics Analysis
- Knowledge Check: Using Alternate Component Representations

- Using the Noise and Vibration Solver
- Creating an ATV Set
- Lab: Creating an ATV Set
- Evaluating ATV Response using the Noise and Vibration Solver
- Lab: Evaluating ATV Response using the Noise and Vibration Solver
- Knowledge Check: Using the Noise and Vibration Solver

- Assessment: Working with Simcenter 3D BEM Acoustics

Chapters

- Gearbox Noise Radiation (BEM)
- Compressor Noise Radiation (BEM)
- Assessment: Applications of Simcenter 3D BEM Acoustics

This learning path teaches users how to use Simcenter 3D BEM Acoustics to solve problems in industry.

This learning path teaches users how to use Simcenter 3D BEM Acoustics to solve problems in industry.

- Analyzing Gearbox Radiation
- Lab: Analyzing Motion to Acoustics Gearbox Noise (BEM)
- Lab Solution: Analyzing Motion to Acoustics Gearbox Noise (BEM)
- Knowledge Check: Gearbox Noise Radiation (BEM)

- Using Binary Loads and Binary Nodes in Acoustics Analysis
- Lab: Analyzing Vibro-Acoustic Response of a Compressor
- Lab Solution: Analyzing Vibro-Acoustic Response of a Compressor
- Knowledge Check: Noise Radiation from a Compressor

- Assessment: Applications of Simcenter 3D BEM Acoustics

Chapters

- Introduction to Aero Vibro-Acoustics
- Fan Noise
- Wind Noise
- Aircraft Panel Loading Noise
- Assessment: Aero Vibro-Acoustics

This learning path teaches users how to solve aero-vibro-acoustics problems using Simcenter 3D.

This learning path teaches users how to solve aero-vibro-acoustics problems using Simcenter 3D.

- Introduction to Acoustics
- Introduction to Aero-Acoustics
- Aero-Acoustics Fundamentals
- Aero-Vibro-Acoustics Process
- Analyzing HVAC Noise Using Aero-Vibro-Acoustics
- Lab: Analyzing HVAC Noise using Aero-Vibro-Acoustics
- Knowledge Check: Introduction to Aero-Vibro-Acoustics

- Analyzing Fan Noise
- Lab: Fan Noise
- Lab Solution: Fan Noise
- Knowledge Check: Fan Noise

- Analyzing Wind Noise
- Lab: Wind Noise
- Lab Solution: Wind Noise
- Wind Noise Knowledge Check

- Analyzing Turbulent Boundary Layer Noise
- Lab: Aircraft Panel Loading Noise
- Lab Solution: Aircraft Panel Loading Noise
- Knowledge Check: Aircraft Panel Loading Noise

- Assessment: Aero Vibro-Acoustics

Chapters

- Introduction to Simcenter 3D Motion - 2022.1
- Analyzing Mechanisms in Motion - 2022.1
- Preparing Models in Motion - 2022.1
- Creating Bodies, Joints, and Drivers - 2022.1
- Defining Springs, Dampers, and Bushings - 2022.1
- Working with Data - 2022.1
- Adding Loads - 2022.1
- Defining Contact - 2022.1
- Solving a Motion Analysis - 2022.1
- Working with Motion Results - 2022.1
- Working with Submechanisms - 2022.1
- Assessment: Motion Fundamentals - 2022.1

Learn to use the basic capabilities of Simcenter 3D Motion to analyze mechanisms.

Learn to use the basic capabilities of Simcenter 3D Motion to analyze mechanisms.

- Introduction to Simcenter 3D Motion
- What is a Mechanism?
- Motion Workflow
- Working in Motion
- Using Motion Files
- Lab: Animating a Mechanism
- Knowledge Check: Working in Motion

- Motion Solvers and General Solution Options
- Motion Analysis-Specific Solution Options
- Running a Kinematic Analysis
- Running a Dynamic Analysis
- Running a Static Analysis
- Lab: Running a Kinematic Analysis with Motion
- Lab: Articulating a Simple Mechanism
- Lab: Running a Dynamic Analysis with Motion
- Lab: Running a Static Analysis with Motion
- Knowledge Check: Analyzing Mechanisms in Motion

- Preparing Models in Motion
- Using Assemblies in Motion
- Lab: Using Assemblies in Motion
- Importing CAD Data into Motion
- Lab: Importing CAD Data into Motion
- Creating a Mechanism in Motion with Primitive Geometry
- Lab: Creating a Mechanism with Primitive Geometry
- Knowledge Check: Preparing Models for Motion

- Motion Bodies
- Lab: Creating Motion Bodies
- Joints
- Creating Joints
- Lab: Creating Cylindrical and Universal Joints
- Understanding the Gruebler Count
- Lab: Checking the Gruebler Count
- Assembling CAD Data
- Joint Friction
- Adding Friction on a Joint
- Lab: Defining Friction on a Joint
- Specialized Constraints and Couplers
- Creating Specialized Constraints and Couplers
- Lab: Creating a Gear Coupler
- Lab: Defining a Point on Curve Constraint
- Lab Solution: Defining a Point on Curve Constraint
- Motion Drivers
- Creating Motion Drivers
- Lab: Creating a Harmonic Motion Driver
- Knowledge Check: Creating Bodies, Joints, and Drivers

- Springs and Dampers
- Creating Springs and Dampers
- Lab: Creating a Spring
- Lab: Creating a Torsion Spring and Damper
- Bushings
- Creating Bushings
- Lab: Creating Bushings
- Knowledge Check: Defining Springs, Dampers, and Bushings

- Profiles
- Using Profiles
- Lab: Using Profiles
- Expressions
- Using Expressions
- Lab: Using Expressions
- Parameter Tables
- Using Parameter Tables
- Lab: Using Parameter Tables
- Math Functions and AFUs
- Using Math Functions and AFUs
- Lab: Using Math Functions and AFUs
- Markers, Smart Points, and Sensors
- Creating Markers, Smart Points, and Sensors
- Lab: Creating Markers and Sensors
- Knowledge Check: Working with Data

- Adding Loads to the Motion Model
- Creating Forces and Torques
- Lab: Creating Scalar and Vector Forces
- Lab: Creating a Scalar Torque
- Lab: Creating Forces and Torques on a Scissors Jack
- Lab Solution: Creating Forces and Torques on a Scissors Jack
- Knowledge Check: Adding Loads

- 3D Contact
- Defining 3D Contact
- Lab: Creating 3D Contact
- Lab: Adding Friction to 3D Contact
- Lab: Creating a Valve Spring and 3D Contact
- Lab Solution: Creating a Valve Spring and 3D Contact
- Analytical Contact
- Analytical Contact Parameters
- Defining Analytical Contact
- Lab: Creating Analytical Contact
- Lab: Creating Analytical Contact Geometry
- Lab: Creating Analytical Contact on a Newton's Cradle
- Lab Solution: Creating Analytical Contact on a Newton's Cradle
- Knowledge Check: Defining Contact

- Setting Up a Motion Analysis
- Setting Up and Solving a Static Analysis
- Setting Up and Solving a Dynamics Analysis
- Improving Solver Performance and Debugging Solver Errors
- Lab: Debugging Solver Errors
- Exporting a Solution and Solving Outside Simcenter 3D
- Knowledge Check: Solving a Motion Analysis

- Motion Results
- Animating Motion Results
- Graphing Motion Results
- Lab: Animating and Graphing Forces
- Lab: Running a Clearance Analysis
- Lab: Identifying Interference
- Lab: Tracing Movement
- Lab: Running a Simulation with Spreadsheet Data
- Lab: Displaying Results in Results Viewer
- Knowledge Check: Working with Motion Results

- Submechanisms
- Working with Submechanisms
- Lab: Adding a Submechanism
- Adding Override Properties to Submechanisms
- Lab: Adding Override Properties to Submechanisms
- Mapping Submechanism Geometry
- Lab: Mapping Submechanism Geometry
- Knowledge Check: Working with Submechanisms

- Assessment: Motion Fundamentals

Chapters

- Flexible Body Analysis with Automatic Flex - 2022.1
- Flexible Body Analysis with Flexible Body - 2022.1
- Flexible Body Post-processing - 2022.1
- Assessment: Flexible Body Analysis - 2022.1

Learn how to analyze and post-process flexible motion bodies.

Learn how to analyze and post-process flexible motion bodies.

- Introduction to Flexible Bodies
- Flexible Body Analysis Using Automatic Flex
- Using Automatic Flex to Create a Flexible Body
- Lab: Using Automatic Flex to Create a Flexible Body
- Lab: Adding Flexibility to a Model using Automatic Flex with Mesh
- Lab Solution: Adding Flexibility to a Model using Automatic Flex with Mesh
- Knowledge Check: Flexible Body Analysis with Automatic Flex

- Flexible Body Analysis Using Flexible Body
- Using Flexible Body to Create a Flexible Body
- Lab: Using Flexible Body to Create a Flexible Body
- Knowledge Check: Flexible Body Analysis with Flexible Body

- Flexible Body Post-processing
- Post Processing Flexible Bodies
- Lab: Post Processing Flexible Bodies
- Knowledge Check: Flexible Body Post-processing

- Assessment: Flexible Body Analysis

Chapters

- Control Elements - 2022.1
- Mechatronics Co-simulation - 2022.1
- Assessment: Controls and Mechatronics Co-simulation - 2022.1

Learn how to control the motion mechanism using data from an external control system.

Learn how to control the motion mechanism using data from an external control system.

- Control Elements
- Creating Control Elements
- Lab: Using Control Elements
- Knowledge Check: Control Elements

- Co-simulation with Third-Party Software
- Co-simulation using Amesim
- Running a Co-simulation using Amesim
- Lab: Running a Co-simulation using Simcenter Amesim
- Running a Co-simulation using Matlab/Simulink
- Running a Co-simulation using FMI
- Lab: Running a Co-simulation using FMI
- Knowledge Check: Mechatronics Co-simulation

- Assessment: Controls and Mechatronics Co-simulation

Chapter

- Discrete Drivetrain - 2022.1

Learn how to create chain, track, and cable models for Motion analysis.

Learn how to create chain, track, and cable models for Motion analysis.

- Introduction to Discrete Drivetrain
- Defining Discrete Drivetrain Layout Elements
- Defining Discrete Drivetrain Pattern Elements
- Defining Discrete Drivetrain Advanced Reporting
- Defining Discrete Drivetrain Pre-tension and Sag
- Creating a Chain Model
- Lab: Creating a Chain Model
- Creating a Track Model
- Solving a Track Model
- Lab: Creating a Track Model
- Creating a Cable Model
- Lab: Creating a Cable Model
- Knowledge Check: Discrete Drivetrain

Chapters

- Introducing thermal analysis in Simcenter 3D Space Systems Thermal - 2022.1
- Meshing for thermal analysis - 2022.1
- Defining thermal boundary conditions - 2022.1
- Defining thermal contacts - 2022.1
- Steady state and transient thermal analysis - 2022.1
- Assessment: Fundamentals of Simcenter 3D Space Systems Thermal - 2022.1

Learn how to use the basic capabilities of Simcenter 3D Space Systems Thermal to perform sophisticated thermal analysis.

Learn how to use the basic capabilities of Simcenter 3D Space Systems Thermal to perform sophisticated thermal analysis.

- Introducing Simcenter 3D Space Systems Thermal
- Introducing Simcenter 3D Space Systems Thermal workflow
- Lab: Simulation process in Simcenter 3D Pre/Post
- Heat transfer concepts
- Knowledge Check: Introducing thermal analysis in Simcenter 3D Space Systems Thermal

- Selecting a mesh and element types
- Using primitives in Simcenter 3D Space Systems Thermal
- Lab: Build a model with primitives
- Defining a mesh for thermal analysis
- Creating mesh collectors and material properties
- Defining physical properties
- Creating mesh and defining material and physical properties for a thermal model
- Lab: Create multiple mesh types for a spacecraft model
- Lab: Set up physical properties and mesh collectors
- Controlling mesh densities and mesh connections
- Working with meshes
- Lab: Create the mesh mating conditions and mesh controls
- Lab: Resolve mesh quality issues
- Modeling assemblies
- Lab: Create an assembly FEM for the airplane cabin model
- Lab: Create an assembly FEM and mesh components
- Create an assembly FEM and mesh components
- Knowledge check: Meshing for thermal analysis

- Defining thermal loads
- Defining thermal constraints
- Applying thermal boundary conditions
- Lab: Define thermal boundary conditions
- Knowledge check: Defining thermal boundary conditions

- Understanding element subdivision thermal coupling method
- Selecting primary and secondary regions
- Understanding projective intersection thermal coupling method
- Comparing projective intersection and element subdivision coupling methods
- Lab: Perform a heat transfer analysis between a chip, PCB and casting
- Thermal coupling types
- Defining thermal contacts
- Lab: Create thermal coupling boundary conditions
- Knowledge check: Defining thermal contacts

- Understanding numerical solution techniques
- Setting up a solution
- Defining solver parameters
- Solving a model
- Lab: Modify and solve a solution
- Steady state heating analysis of the mars rover
- Lab: Define a thermostat in a steady state solution
- Transient analysis
- Setting up and solving a transient solution
- Lab: Thermal transient analysis of a power supply using thermostat and active heat controller
- Thermal transient analysis of a power supply using thermostat and active heat controller
- Knowledge check: Steady state and transient thermal analysis

- Assessment: Fundamentals of Simcenter 3D Space Systems Thermal

Chapter

- Modeling radiation in space applications - 2022.1

Understand thermal radiation heat transfer, radiation exchange, and radiative heating. Learn how to set up radiation request.

Understand thermal radiation heat transfer, radiation exchange, and radiative heating. Learn how to set up radiation request.

- Understanding thermal radiation
- Understanding radiation exchange
- Defining thermo-optical properties
- Lab: Explore advanced thermo-optical properties for radiation modeling
- Introducing view factors calculation methods
- Understanding radiation calculation methods
- Radiation modeling
- Define radiation request
- Lab: Model radiative exchanges of a satellite
- Modeling radiative heating
- Define radiative heating
- Understanding ray tracing technology
- Accounting for specular reflections and transmissivity in radiation calculation
- Non-gray radiative heat transfer
- Defining non-gray thermo-optical properties and selecting band discretization
- Best practices in modeling radiation
- Knowledge check: Modeling radiation in space applications

Chapters

- 1D hydraulic network modeling - 2022.1
- Thermal management devices - 2022.1
- Customize the thermal solver - 2022.1
- Assessment: Advanced thermal modeling applications in Simcenter 3D - 2022.1

Learn how to use advanced features to perform 1D hydraulic network modelling, articulation and motion, Joule heating and Peltier cooler modelling.

Learn how to use advanced features to perform 1D hydraulic network modelling, articulation and motion, Joule heating and Peltier cooler modelling.

- 1D hydraulic duct networks
- How the thermal solver computes ducts
- Creating a 1D mesh duct network and modeling the cooling of a 2D shell heat exchanger
- Lab: Create 1D duct network in a mold
- Analyzing forced convection in a heat exchanger using immersed ducts
- Lab: Create duct boundary conditions in a thermal model
- Knowledge checks: 1D hydraulic network

- Joule heating and thermal devices modeling
- Modeling Joule heating
- Lab: Model Joule heating
- Lab: Model a Peltier cooler
- Modeling heat pipes in thermal analysis
- Lab: Create a heat pipe thermal device
- Knowledge check: Thermal management devices

- Extending the solver functionality with a user-written subroutine
- Lab: Using a user written subroutine define a thermostat
- Customizing the thermal solver using plugin functions
- Including and running the plugin function in a solve
- Lab: Write a plugin function and use it in a solve
- Knowledge check: Customize the thermal solver

- Assessment: Advanced thermal modeling applications in Simcenter 3D

Chapters

- Temperature results mapping - 2022.1
- Mapping constraint - 2022.1
- Assessment : Mapping the results to another model - 2022.1

Learn how to transfer temperatures onto a target model, typically an independent structural model of the same geometry.

Learn how to transfer temperatures onto a target model, typically an independent structural model of the same geometry.

- Introducing temperature mapping
- Mapping temperature results
- Lab: Map the heat distribution of a solar panel
- Lab: Map temperatures to a PCB structural model
- Knowledge check: Temperature results mapping

- Introducing mapping constraint
- Restricting temperature mapping using association and target zones
- Mapping solar panel temperature results onto the structural model
- Mapping solar panel temperature results onto the structural model
- Knowledge check: Mapping constraint

- Assessment : Mapping the results to another model

Chapters

- Orbital modeling - 2022.1
- Solar and planetary heating - 2022.1
- Multilayer and thermal protection system modeling - 2022.1
- Material transformation - 2022.1
- Articulation and motion - 2022.1
- Electronic thermal management - 2022.1
- Assessment: Space systems thermal analysis - 2022.1

Understand thermal analysis capabilities specific for the space industry that include orbital heating, solar and planetary heating, and modeling of multi-layer.

Understand thermal analysis capabilities specific for the space industry that include orbital heating, solar and planetary heating, and modeling of multi-layer.

- Introducing Space System Thermal concepts
- Defining orbit type parameters, solar and celestial bodies characteristics
- Defining a spacecraft attitude and its calculation positions
- Defining an orbit modeling object
- Defining orbital heating
- Modeling orbital heating
- Introducing the Orbit Visualizer
- Using the Orbit Visualizer
- Lab: Model orbital maneuvers of a communication satellite

- Solar and planetary heating
- Modeling solar heating space
- Lab: Analyze diurnal heating of a rover
- Lab: Apply boundary conditions and solve a satellite model
- Apply boundary conditions and solve a satellite model Part 1
- Apply boundary conditions and solve a satellite model Part 2
- Knowledge check: Solar and planetary heating

- Multilayer and thermal protection system modeling
- Creating a uniform and non-uniform multilayer shells
- Lab: Model multi-layer shells and thermal protection system
- Knowledge check: Multilayer and thermal protection system modeling

- Material transformation
- Modeling of charring ablative materials
- Modeling ablation effects using the Ablation-Charring modeling object
- Lab: Model thermo-optical property degradation
- Knowledge check: Material transformation

- Articulation and motion
- Defining the Solid Motion Effects simulation object using the articulation type
- Understanding thermal effects of the spinning model
- Defining the Solid Motion Effects simulation object using the spinning type
- Lab: Model the robot arm motion using articulation
- Knowledge check: Articulation and motion

- Understanding electronics thermal management
- Defining a PCB Stack physical property
- Analyzing thermal dissipation of the electronic components
- Defining a Printed Board and PCB Component simulation objects
- Lab: Thermal modeling of PCB components with pads in an electronic device
- Knowledge check: Electronic thermal management

- Assessment: Space systems thermal analysis

Chapters

- Learning Experience Overview
- Analyzing Models in Simcenter 3D Pre/Post - 2206
- Managing Analysis Data in Simcenter 3D Files - 2206
- Using Pre/Post Features to Work with Models - 2206
- Assessment: Fundamentals of Using Pre/Post - 2206

Learn how to analyze a model and work with analysis data in Simcenter 3D.

Learn how to analyze a model and work with analysis data in Simcenter 3D.

- Welcome: Navigation Overview
- Fundamentals of using Pre/Post Intro

- What Can You Do with Simcenter 3D Pre/Post?
- Finite Element Analysis in Simcenter 3D
- Finite Element Analysis in Simcenter 3D
- Knowledge Check: Analyzing Models in Simcenter 3D and Pre/Post

- Simcenter 3D Files Overview
- Working with Simcenter 3D Files in Pre/Post
- Preparing the Model
- Modifying Model Geometry
- Solving the Model and Post-processing
- Lab: Using Simcenter 3D Files in an Analysis
- Knowledge Check: Managing Analysis Data in Simcenter 3D Files

- Using Pre/Post Features
- Using Simcenter 3D Search
- Using the Simulation Navigator to Work with Your Model
- Lab: Working with a Model Using the Pre/Post User Interface
- Displaying a Model
- Lab: Displaying a Model
- Selecting Objects
- Using Selection Recipes
- Lab: Selecting Objects
- Using Groups
- Lab: Using Groups
- Working with Coordinate Systems
- Lab: Working with Coordinate Systems
- Knowledge Check: Using Pre/Post Features to Work with Models
- Thank you for watching Fundamentals of using Pre/Post

- Assessment: Fundamentals of Using Pre/Post

Chapters

- Preparing Geometry for Meshing - 2206
- Meshing a Model - 2206
- Connecting Meshes - 2206
- Modeling Assemblies - 2206
- Applying Boundary Conditions - 2206
- Modeling Contact and Glue Conditions - 2206
- Defining Variable Conditions and Properties - 2206
- Modeling Symmetry - 2206
- Checking the Model and Resolving Problems - 2206
- Assessment: Preparing the Model for Analysis - 2206

- Loading a Model into Simcenter 3D
- Preparing Geometry for Meshing
- Using Synchronous Modeling to Model Parts
- Lab: Using Synchronous Modeling to Modify Parts
- Simplifying Geometry with Idealization
- Lab: Creating Midsurfaces before Meshing
- Simplifying Geometry with Abstraction
- Lab: Simplifying Geometry with Abstraction
- Working with Associative Copies of Geometry
- Lab: Working with Associative Copies of Geometry
- Lab: Simplifying Geometry for Meshing
- Lab Solution: Simplifying Geometry for Meshing
- Knowledge Check: Preparing Geometry

- Selecting a Mesh and Element Type
- Creating a Mesh
- Lab: Creating a 3D Tetrahedral Mesh
- Using Mesh Collectors to Organize the Model
- Lab: Using Mesh Collectors to Organize the Model
- Defining Material Properties for a Mesh
- Lab: Defining Material Properties for a Mesh
- Lab: Defining Physical Properties for a Mesh
- Creating a 3D Hexahedral Mesh
- Splitting Complex Bodies for Hexahedral Meshing
- Lab: Creating a 3D Hexahedral Mesh
- Creating a 2D Mesh
- Lab: Creating a 2D Mesh
- Creating a 2D Mapped Mesh
- Lab: Creating a 2D Mapped Mesh
- Creating a 1D Mesh
- Lab: Creating a 1D Mesh
- Controlling the Mesh Display
- Creating Mesh Mating Conditions to Connnect Meshes
- Lab: Creating Mesh Mating Conditions
- Editing Meshes with Manual Mesh Techniques
- Lab: Editing Meshes with Manual Mesh Techniques
- Controlling Mesh Density
- Lab: Controlling Mesh Density
- Setting Element Size and Surface Curvature
- Lab: Modifying Element Size
- Lab: Creating a Structured Mesh
- Lab Solution: Creating a Structured Mesh
- Knowledge Check: Meshing

- Mesh Connections
- Modeling Pinned Connections
- Lab: Modeling Pinned Connections
- Modeling Connections with Spider Elements
- Lab: Modeling Connections with Spider Elements
- Modeling Bolted Connections
- Modeling Bolted Connections Using Nuts
- Lab: Modeling a Bolted Connection with a Nut
- Lab: Applying Bolt Pre-loads
- Creating Universal Connections
- Lab: Modeling Universal Connections
- Lab: Modeling Bolt Universal Connections
- Lab Solution: Modeling Bolt Universal Connections
- Knowledge Check: Modeling Connections

- Modeling Assemblies
- Modeling an Assembly FEM from a CAD Assembly
- Modeling an Assembly FEM without a CAD Assembly
- Lab: Modeling an Associative Assembly FEM
- Lab: Modeling a Non-associative Assembly FEM
- Knowledge Check: Modeling Assemblies

- Applying Boundary Conditions
- Nastran Structural Loads
- Nastran Structural Constraints
- Applying Loads
- Applying Constraints
- Lab: Applying Loads and Constraints
- Lab: Applying Boundary Conditions using a Local Coordinate System
- Lab: Applying Boundary Conditions
- Lab Solution: Applying Boundary Conditions
- Knowledge Check: Applying Boundary Conditions

- Contact and Glue Conditions
- Modeling Contact Conditions
- Lab: Applying Contact
- Modeling Glue Conditions
- Lab: Modeling Edge-Surface Glue Connections
- Lab: Modeling Surface-Surface Glue Connections
- Applying Surface-to-Surface Contact and Gluing
- Lab: Adding Contact in a Bracket Model
- Lab Solution: Adding Contact in a Bracket Model
- Knowledge Check: Applying Contact and Gluing Conditions

- Using Fields
- Types of Fields
- Using Fields to Define Boundary Conditions
- Lab: Using Fields to Define a Boundary Condition
- Using a Spatial Map Field to Define a Boundary Condition
- Lab: Using a Spatial Map Field to Define a Boundary Condition
- Using a Field to Define Material Properties
- Lab: Using a Field to Define Nonlinear Material Properties
- Displaying Fields
- Lab: Displaying Fields
- Using Expressions
- Defining Expressions
- Lab: Using Expressions to Define Boundary Conditions
- Lab: Defining a Variable Boundary Condition
- Lab Solution: Defining a Variable Boundary Condition
- Knowledge Check: Defining Variable Conditions and Properties

- Symmetry Modeling Overview
- Lab: Modeling a Cyclic Symmetric Structure
- Lab: Modeling an Axisymmetric Structure
- Lab: Using Plane Stress Elements in a Axisymmetric Analysis
- Displaying Symmetry Results in a Post View
- Lab: Displaying Axisymmetric Results in a Post View
- Knowledge Check: Modeling Symmetry

- Checking Mesh Quality
- Techniques for Resolving Mesh Quality Issues
- Lab: Resolving Mesh Quality Problems
- Checking the Model Before Solving
- Techniques for Resolving Model Quality Issues
- Lab: Resolving Model Quality Issues
- Knowledge Check: Checking the Model and Resolving Problems

- Assessment: Preparing the Model for Analysis

Chapters

- Setting Up and Running a Structural Analysis - 2206
- Introduction to Structural Analysis Workflows - 2206
- Introduction to Nonlinear Analysis Workflows - 2206
- Assessment: Solving the Model - 2206

Learn how to solve a model with the Simcenter Nastran solver using structural analysis types.

Learn how to solve a model with the Simcenter Nastran solver using structural analysis types.

- Using Solutions and Subcases
- Creating Solutions and Subcases
- Lab: Creating Solutions and Subcases
- Defining Solution Attributes
- Setting Solver Parameters
- Solving the Model
- Dealing with Common Warnings from the Solve
- Determining the Validity of Results
- Knowledge Check: Setting Up and Running a Structural Analysis

- Structural Analysis Overview
- Linear Statics Analysis Workflow
- Lab: Linear Statics Analysis Workflow
- Normal Modes Analysis Workflow
- Lab: Normal Modes Analysis Workflow
- Linear Buckling Analysis Overview
- Linear Buckling Analysis Workflow
- Lab: Linear Buckling Analysis Workflow
- Knowledge Check: Introduction to Structural Analysis Workflows

- Nonlinear Analysis Overview
- Setting Up a Nonlinear Solution
- Lab: Geometric Nonlinear Analysis
- Using Time Steps in a Nonlinear Solution
- Lab: Using Timesteps in a Nonlinear Solution
- Evaluating Nonlinear Models
- Lab: Evaluating Nonlinear Models
- Knowledge Check: Introduction to Nonlinear Analysis Workflows

- Assessment: Solving the Model

Chapters

- Displaying Results in Post Views - 2206
- Manipulating Results Data - 2206
- Graphing Results - 2206
- Saving and Restoring Views - 2206
- Generating Reports - 2206
- Assessment: Reviewing Analysis Results - 2206

Learn how to display analysis results using post views, graphs, and reports.

Learn how to display analysis results using post views, graphs, and reports.

- Displaying Results Overview
- Displaying Results in Post Processing
- Displaying Results in a Post View
- Lab: Displaying Results in a Post View
- Controlling Visibility in Post Views
- Lab: Controlling Visibility in Post Views
- Displaying Results in Multiple Viewports
- Lab: Displaying Results in Multiple Viewports
- Animating Results
- Lab: Animating Results
- Annotating Results
- Lab: Annotating Results
- Displaying More Results in Post Processing
- Lab: Displaying Stress Results on 2D Elements
- Displaying Stress/Strain Results on 2D Elements
- Calculating and Displaying Beam Stresses
- Lab: Displaying Beam Stresses
- Displaying Results in the Results Viewer
- Lab: Displaying Results in Post Views
- Lab Solution: Displaying Results in Post Views
- Knowledge Check: Displaying Results in Post Views

- Manipulating Results Data Overview
- Identifying and Outputting Results
- Lab: Identifying and Outputting Results
- Creating Custom Results
- Lab: Creating Custom Results
- Combining and Enveloping Results
- Lab: Enveloping and Combining Results
- Creating Nodal Force Reports
- Simcenter 3D Combined
- Assessment: Manipulating Results Data

- Graphing Overview
- Graphing Results Across FE Entities
- Lab: Graphing Results Across FE Entities
- Graphing Results Using a Query Curve
- Lab: Graphing Results Using a Query Curve
- Graphing Results Across Iterations
- Lab: Graphing Results Across Multiple Iterations
- Plotting Two Functions
- Lab: Generating Two Function Plots
- Modifying Graph Display Properties
- Lab: Modifying Graph Displays
- Lab: Graphing Results
- Lab Solution: Graphing Results
- Assessment: Graphing Results

- Saving and Restoring Views Overview
- Saving and Restoring Snapshots to Set up Views
- Lab: Using Snapshots to Set Up Views
- Saving and Restoring Post View Settings
- Lab: Saving and Restoring Post View Settings
- Assessment: Saving and Restoring Views

- Introduction to Creating Reports
- Generating a Report
- Lab: Generating a Report
- Customizing a Report Template
- Lab: Customizing a Report
- Knowledge Check: Generating Reports

- Assessment: Reviewing Analysis Results

Chapter

- Response Dynamics - 2206

Learn how to use response dynamics to analyze a model's response to an excitation.

Learn how to use response dynamics to analyze a model's response to an excitation.

- Response Dynamics Overview
- Setting Up and Solving a Response Dynamics Analysis
- Lab: Part 1: Setting Up and Solving a Response Dynamics Analysis
- Solving a Transient Analysis
- Lab: Part 2: Solving a Response Dynamics Transient Analysis
- Analyzing a Random Event
- Lab: Analyzing a Random Event
- Part 1: Analyzing Response to Harmonic and PSD Excitations
- Part 2: Analyzing Response to Harmonic and PSD Excitations
- Lab: Analyzing Response to Harmonic and PSD Excitations
- Knowledge Check: Introduction to Response Dynamics Analysis
- Assessment: Introduction to Response Dynamics Analysis

Chapters

- Rotor Dynamics Introduction - 2206
- Preparing the Finite Element Model - 2206
- Complex Modal Analysis - 2206
- Harmonic Response - 2206
- Transient Response - 2206
- Using Superelements - 2206
- Assessment: Simcenter 3D Rotor Dynamics

Learn how to model rotors and analyze the model with Complex Modal Analysis, Harmonic Response, Transient Response, and using Superelements.

Learn how to model rotors and analyze the model with Complex Modal Analysis, Harmonic Response, Transient Response, and using Superelements.

- Simcenter 3D Rotor Dynamics Fundamentals
- Overview of Simcenter 3D Rotor Dynamics
- Knowledge Check: Rotor Dynamics Introduction

- Rotor Modeling
- Preparing the Finite Element Model
- Lab: 3D Rotor Modeling
- Lab: 2D Rotor Modeling
- Knowledge Check: Finite Element Model Preparation

- Overview of Complex Modal Analysis
- Computing Critical Speeds of a Rotating System
- Lab: Complex Modal Analysis
- Knowledge Check: Complex Model Analysis

- Overview of Harmonic Response
- Evaluating Synchronous Harmonic Response
- Lab: Harmonic Response Synchronous Analysis
- Simcenter 3D Combined
- Lab: Asynchronous Frequency Response with Variable Rotor Speed
- Knowledge Check: Harmonic Response

- Overview of Transient Response
- Evaluating Transient Response
- Simcenter 3D Combined
- Knowledge Check: Transient Response

- Overview of Using Superelements
- Using Superelements
- Lab: Using Superelements
- Knowledge Check: Superelements

- Assessment: Simcenter 3D Rotor Dynamics

Chapters

- Nonlinear Dynamics
- Hyperelasticity
- Creep
- Gaskets
- Nonlinear Solutions Practical Use Tips and Tricks
- Assessment: Specialty Topics

Learn how to include nonlinear dynamics, hyperelasticity, creep, and gaskets in SOL 401 and 402 nonlinear solutions.

Learn how to include nonlinear dynamics, hyperelasticity, creep, and gaskets in SOL 401 and 402 nonlinear solutions.

- Nonlinear dynamics - overview
- Damping types and caveats
- Lab: Camera drop
- Lab solution: Camera drop
- Knowledge Check

- Hyperelasticity (SOL 402 only)
- Lab: Shifter boot
- Lab solution: Shifter boot
- Knowledge Check

- Creep in metals
- Creep material usage
- Knowledge Check

- Gasket materials overview (SOL 402 only)
- Gasket material usage (SOL 402 only)
- Knowledge Check

- Improving performance of nonlinear solutions
- Nonlinear solutions practical use: tips and tricks
- Knowledge Check

- Assessment

Chapters

- Nonlinear Analysis with Simcenter Nastran Solutions 401 and 402
- SOL 401 and 402 Solution Types and Procedures
- Loads and Boundary Conditions in Nonlinear Analyses
- Geometric Nonlinearity
- Contact - General
- Contact and Glue with SOL 401 and 402
- Plasticity
- Large Strain Solutions
- Assessment: Essential Topics

Learn how to prepare a model for nonlinear analysis, solve, and review analysis results using Simcenter Nastran SOL 401 and 402.

Learn how to prepare a model for nonlinear analysis, solve, and review analysis results using Simcenter Nastran SOL 401 and 402.

- Nonlinear analysis versus linear analysis
- Types of nonlinearities in nonlinear analysis
- Comparison of Simcenter Nastran nonlinear solvers
- Knowledge Check

- Nonlinear solution types
- Subcase chaining
- Nonlinear solution algorithm
- Convergence criteria
- Nonlinear solution element support
- Knowledge Check

- Load types in nonlinear solutions
- Time variation of loads
- Bolt preloads in nonlinear solutions
- Boundary conditions in nonlinear solutions
- Knowledge Check

- Geometric nonlinearity overview
- Lab: Exploring follower forces with a simple cantilevered beam model
- Lab solution: Exploring follower forces with a simple cantilevered beam model
- Lab: Drum head under pressure
- Lab solution: Drum head under pressure
- Knowledge Check

- Contact basics
- Setting up contact in a simulation
- Common contact parameters
- Contact results
- Knowledge Check

- SOL 401 contact parameters
- Lab: SOL 401 clip & receiver
- Lab solution: SOL 401 clip & receiver
- SOL 402 contact parameters
- Lab: SOL 402 contact example problem - Riveted joint breakout model
- Lab solution: SOL 402 contact example problem - Riveted joint breakout model
- Lab: SOL 402 Rigid vs. flexible boundary
- Lab solution: SOL 402 Rigid vs. flexible boundary
- Glue in nonlinear solutions
- Knowledge Check

- Plasticity basics
- Implementing plasticity in Simcenter 3D
- Lab: Plasticity on a uniaxial sample
- Lab solution: Plasticity on a uniaxial sample
- Plasticity definition options
- Lab: Hardening rules comparison on a cyclically loaded specimen
- Lab solution: Hardening rules comparison on a cyclically loaded specimen
- Plasticity tips and tricks
- Knowledge Check

- Large strains overview
- Lab: Axisymmetric sheet forming
- Lab solution: Axisymmetric sheet forming
- Knowledge Check

- Assessment

Chapters

- Introducing FE Model Update - 2212
- Creating a work solution for a model update solution process - 2212
- Model update solution process - 2212
- Model update set solution process - 2212
- FE Model Update - Assessment - 2212

You will learn the key steps of the test-simulation interaction and understand the model update solution process. You will also learn about design variables.

You will learn the key steps of the test-simulation interaction and understand the model update solution process. You will also learn about design variables.

- Introducing the FE Model Update solution process
- Model update solution process
- Sources of error in structural simulation
- Preparing FEM for a model update solution process
- Create a simplified FEM for a model update solution process
- Knowledge check: Introducing FE Model Update

- Creating a SOL 200 Model Update solution
- Creating design variables
- Introducing model reduction methods
- Creating a SOL 200 Model Update solution
- Create a model update work solution
- Knowledge check: Creating a work solution for a model update solution process

- Introducing a Model Update solution process
- Creating a model update solution process
- Mode shape pairing and shape correlation methods
- Create a model update solution process
- Optimization targets
- Specifying the optimization targets
- Optimizing design variables
- Optimizing design variables and updating the spacecraft model
- Model update solution process workflow
- Update an airplane model
- Update an airplane model
- Knowledge check: Model update solution process

- Introducing Model Update Set
- Creating a model update set solution
- Create model update set
- Knowledge check: Model update set solution process

- Assessment

Chapters

- Introducing FE Model Correlation - 2212
- Introducing pre-test solution process - 2212
- Understanding test analysis reference solution - 2212
- Preparing for correlation analysis - 2212
- Introducing shape correlation - 2212
- Introducing FRF correlation - 2212
- Assessment: FE Model Correlation - 2212

Learn how to prepare physical tests using the pre-test planning tools and how to correlate modal finite element results with experimental data in Simcenter 3D.

- Introducing FE Model Correlation and Updating
- Getting started with Simcenter 3D FE Model Correlation
- Knowledge Check: Introducing FE Model Correlation

- Introducing pre-test solution process
- Understanding pre-test DOFs
- Lab: Create a pre-test solution process and define DOFs
- Selecting sensors
- Creating pre-test solution process and solving sensor configuration
- Lab: Define sensor configurations
- Selecting exciters
- Lab: Use a pre-test solution to define exciter locations
- Using a pre-test solution to define exciter locations
- Knowledge Check: Introducing pre-test solution process

- Understanding test analysis reference solution
- Sharing sensor and exciter locations with test engineers
- Lab: Create a test analysis reference solution and display the analysis shapes
- Knowledge Check: Understanding test analysis reference solution

- Understanding correlation solution process
- Creating test and analysis reference solution
- Lab: Manage teast and analysis reference data
- Aligning work and reference models
- Performing geometrical correlation of work and reference model
- Lab: Create a correlation solution process
- Lab: Prepare a model for correlation solution process
- Preparing a model for correlation solution process
- Knowledge Check: Preparing for correlation analysis

- Introducing shape correlation
- Managing sensors and working with shape pairs
- Lab: Manage sensors
- Introducing quantitative shape correlation
- Repeated mode shapes of symmetric structures
- Generating and displaying matrix results
- Lab: Visualize shape correlation results
- Lab: Plot correlation error metrics
- Correlating shapes of symmetric structures
- Lab: Perform shape correlation of a symmetric structure
- Lab: Compare correlation mode shapes
- Lab: Analyze the shape correlation of an aircraft engine nacelle
- Analyzing the shape correlation of an aircraft engine nacelle
- Knowledge Check: Introducing shape correlation

- Introducing FRF analysis solution
- Creating analysis solution and output request
- Lab: Create an analysis solution with FRF results
- Introducing FRF correlation solution process
- Displaying FRF correlation results
- Creating FRF correlation and displaying overlay FRFs
- Lab: Create FRF correlation and display results
- Creating FRF correlation
- Creating a Synthesized FRF Correlation solution process
- Lab: Create synthesized FRF correlation
- Knowledge Check: Introducing FRF correlation

- Assessment: FE Model Correlation

Chapters

- Adaptive Meshing - 2206
- Superelements - 2206
- Introduction to Thermal Analysis - 2206
- Geometry Optimization - 2206
- Simcenter Nastran Design Optimization - 2206
- Simcenter Nastran Topology Optimization - 2206
- Assessment: Processes and Solutions - 2206

Learn how to analyze models using specialized Simcenter 3D tools.

Learn how to analyze models using specialized Simcenter 3D tools.

- Adaptive Meshing Overview
- Refining a Mesh with Adaptive Meshing
- Lab: Refining a Mesh with Adaptive Meshing
- Knowledge Check: Adaptive Meshing

- Superelement Analysis Overview
- Reducing a Subassembly to a Superelement
- Lab: Reducing a Subassembly to a Superelement
- System Modeling with External Superelements Overview
- Modeling with External Superelements
- Lab: Modeling with External Superelements
- Knowledge Check: Superelements

- Thermal Analysis Overview
- Setting Up and Solving a Thermal Analysis
- Lab: Setting Up and Solving a Thermal Analysis
- Knowledge Check: Introduction to Thermal Analysis

- Geometry Optimization Overview
- Geometry Optimization Workflow
- Lab: Geometry Optimization
- Knowledge Check: Geometry Optimization

- Simcenter Nastran Design Optimization Overview
- Setting up the Model for Nastran Design Optimization
- Creating Constraints and Solving for Simcenter Nastran Design Optimization
- Lab: Simcenter Nastran Design Optimization
- Knowledge Check: Design Optimization

- Simcenter Nastran Topology Optimization Overview
- Simcenter Nastran Topology Optimization Workflow
- Lab: Simcenter Nastran Topology Optimization
- Knowledge Check: Simcenter Nastran Topology Optimization

- Assessment: Processes and Solutions

Receive unlimited access to all new content added during your active subscription.

During your subscription period, you will automatically receive access to all new content added to the library, including training on new product releases and technology updates to maximize your proficiency.

- 12 month subscription
- Access to cloud-based environment for hands-on lab exercises
- Access to new training content added during the subscription period
- Knowledge assessments to measure learning progress

Starting at

USD $1561.00 / year

USD $1561.00 / year